
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Easy-to-Deploy API Extraction by Multi-Level
Feature Embedding and Transfer Learning

Suyu Ma, Zhenchang Xing, Chunyang Chen, Cheng Chen, Lizhen Qu, Guoqiang Li

Abstract—Application Programming Interfaces (APIs) have been widely discussed on social-technical platforms (e.g., Stack Overflow).
Extracting API mentions from such informal software texts is the prerequisite for API-centric search and summarization of programming
knowledge. Machine learning based API extraction has demonstrated superior performance than rule-based methods in informal
software texts that lack consistent writing forms and annotations. However, machine learning based methods have a significant
overhead in preparing training data and effective features. In this paper, we propose a multi-layer neural network based architecture for
API extraction. Our architecture automatically learns character-, word- and sentence-level features from the input texts, thus removing
the need for manual feature engineering and the dependence on advanced features (e.g., API gazetteers) beyond the input texts. We
also propose to adopt transfer learning to adapt a source-library-trained model to a target-library, thus reducing the overhead of manual
training-data labeling when the software text of multiple programming languages and libraries need to be processed. We conduct
extensive experiments with six libraries of four programming languages which support diverse functionalities and have different
API-naming and API-mention characteristics. Our experiments investigate the performance of our neural architecture for API extraction
in informal software texts, the importance of different features, the effectiveness of transfer learning. Our results confirm not only the
superior performance of our neural architecture than existing machine learning based methods for API extraction in informal software
texts, but also the easy-to-deploy characteristic of our neural architecture.

Index Terms—API extraction, CNN, Word embedding, LSTM, Transfer learning

✦

1 INTRODUCTION

A PPLICATION Programming Interfaces (APIs) are a set
of definitions, functions and modules for developing

software programs. To support the use of APIs and solve the
usage issues, developers not only create formal API speci-
fications and tutorials (e.g., Java API, Android Developers),
but also generate large numbers of informal discussions
on APIs (e.g., Stack Overflow questions and answers) [1].
Distinguishing API mentions from general natural language
words in API documentation is referred to as API extraction
or API recognition in the literature [2]. Fig. 1 illustrates an
example of API extraction in natural language sentences.
API extraction is crucial for many downstream applications.
For traceability recovery across software documents, API
extraction lays the foundation of linking code-like terms
to specific code elements in an API or API documentation
[3], [4]. For entity-centric search, API extraction can be
exploited to create a thesaurus of software-specific terms
and commonly used morphological forms [5], [6], build an
API caveats knowledge graph [7] and search for appropri-
ate APIs for programming tasks [8]. For domain-specific
question answering, API extraction can help select answer
paragraphs and generate useful answer summary [9].

• Suyu Ma, Chunyang Chen (corresponding author) and Lizhen Qu
are with Faculty of Information Technology, Monash University, Aus-
tralia. E-mail: masuyu2015@outlook.com, chunyang.chen@monash.edu,
Lizhen.Qu@monash.edu.

• Zhenchang Xing is with College of Engineering & Computer
Science, Australian National University, Australia. E-mail: zhen-
chang.xing@anu.edu.au

• Cheng Chen is with PricewaterhouseCoopers Firm, China. E-mail:
cc94226@live.com

• Guoqiang Li (corresponding author) is with School of Software, Shanghai
Jiao Tong University, China. E-mail: li-gq@cs.sjtu.edu.cn

Manuscript received October 31, 2018; revised August 24, 2019.

Unlike formal API documentation where API mentions
are consistently written and annotated, API mentions in
informal software texts usually lack consistent writing forms
and annotations [2]. For example, the methods apply and
bfill in Fig. 1 are not mentioned in their fully qualified name
and are not annotated with a special tag like <code>. Fur-
thermore, an API may have a common-word simple name
(e.g., apply, series). Our analysis of API simple names in six
libraries of four programming languages reveals that 6% to
66% (median 42%) APIs of these libraries have common-
word simple name. Such APIs are referred to as polysemous
APIs [2], because mentioning them in their simple name
without special tag creates a common-word polysemy issue
for API extraction [2].

Polysemous API mentions, together with other informal-
ity of API mentions, render rule-based extraction of API
mentions unreliable for informal software texts. Recently,
several machine learning based API extraction methods [2],
[10] have been proposed. These machine learning based
methods have demonstrated superior performance for API
extraction in informal texts than rule-based methods. How-
ever, a major barrier for deploying such machine learning
based methods is the significant overhead required for
manual labeling of model training data and manual feature
engineering.

API extraction in informal software texts can be regarded
as a Named Entity Recognition (NER) task [11] in Natural
Language Processing (NLP). An NER task in general English
text detects mentions of named entities, such as people,
locations and organizations. It deals with single language.
However, API extraction has to deal with hundreds of
libraries and frameworks discussed by developers. Training
a reliable machine learning based API extraction model for a

https://docs.oracle.com/javase/7/docs/api/
https://developer.android.com/index.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 1: Illustrating API Extraction Task

library often requires several hundreds of manually labeled
sentences mentioning this library’s APIs [2]. The effort to
prepare training data for hundreds of libraries would be
prohibitive. Furthermore, it may also be difficult to prepare
sufficient high-quality training data for APIs of some less
frequently discussed libraries or frameworks.

Another related challenge is to select effective features
for a machine learning model to recognize a particular
library’s APIs. Although developers follow general naming
conventions, orthographic features of APIs still vary greatly
from one library to another. For example, as reported in
Section 2, different libraries have different percentages of
polysemous API names. Furthermore, users of some li-
braries tend to mention APIs with clear orthographic fea-
tures (e.g., package names, bracket and/or dot), while users
of other libraries tend to directly mention API simple names.
Functionalities of software libraries also vary greatly, such
as graphical user interface, numeric computation, machine
learning, data visualization, database access. As such, dis-
cussion contexts of a library’s APIs, like Pandas (a Python
machine learning library), often differ from those of another
library’s APIs, like JDBC (a Java database access library).

Designers of a machine learning based API extraction
model have to manually select the most effective features
for different libraries’ APIs. This is a challenging task as
there are dozens of features to choose from1. Unsupervised
word embeddings have been explored for API extraction
tasks [2], but there has been no work on exploiting character-
and sentence-context embeddings from input texts for API
extraction. Furthermore, some advanced features to boost
API extraction performance, such as word clusters and API
gazetteers, have to be hand-crafted.Without such advanced
features, existing machine learning based API extraction
methods perform poorly using only orthographic features
from the input texts [2].

The easy deployment is defined as that the model can
be easily trained for different datasets, without requiring
any manual feature engineering. To make machine learning
based API extraction methods easy to deploy in practice,
we must reduce the overhead of preparing training data
and effective features, and remove the dependence on
additional features beyond input texts. In this paper, we
design a neural architecture for API extraction in informal
software text. Our neural architecture is composed of the
character-level convolutional neural network (CNN), word-

1. https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/
nlp/ie/NERFeatureFactory.html

level embeddings, and sentence-level Bi-directional Long
Short-Term Memory (Bi-LSTM) network for automatically
learning character-, word- and sentence-level features from
input texts, respectively. This neural architecture can be
trained in an end-to-end fashion, thus removing the need
for manual feature engineering and the need for addi-
tional features beyond input texts, and greatly reducing the
amount of new training data needed for adapting a model
to different libraries.

Furthermore, our analysis of the API-naming and API-
mention characteristics suggests that the characteristics of
API names, API mentions and discussion contexts differ
across libraries, but they also share certain level of common-
alities. To exploit such commonalities for easy deployment
of API extraction model, we adopt transfer learning [12],
[13] to fine-tune a model trained with a source library’s API
discussion texts to a target library. This helps reduce the
amount of training data required for training a high-quality
target-library model, compared with training the model
from scratch with randomly initialized model parameters.
The design of our multi-level neural architecture enables the
fine-tuning of different levels of features in transfer learning.

We conduct extensive experiments to evaluate the per-
formance of the proposed neural architecture for API ex-
traction as well as the effectiveness of transfer learning. Our
experiments involve three Python libraries (Pandas, NumPy
and Matplotlib), one Java library (JDBC), one JavaScript
library (React), and one C library (OpenGL). As discussed
in Section 2, these six libraries support diverse function-
alities and have different API-naming, API-mention and
discussion-context characteristics. We manually label API
mentions in 3600 Stack Overflow posts (600 for each li-
brary) for the experiments. Our experiments confirm the
effectiveness of our neural architecture in learning multi-
level features from the input texts, and show that the learned
features can support high-quality API extraction in informal
software texts, without the need for additional hand-crafted
features beyond the input texts. Our experiments also con-
firm the effectiveness of transfer learning [14] in boosting the
target-library model performance with much less training
data, even in few-shot (about 10 posts) training settings.

This paper makes the following four contributions:
• Our work is the first one to consider not only the

performance of machine learning based API extrac-
tion methods but also the easy deployment of such
methods for the software text of multiple programming
languages and libraries.

• We propose a multi-layer neural architecture to auto-
matically learn to extract effective features from the in-
put texts for API extraction, thus removing the need for
manual feature engineering as well as the dependence
on features beyond the input texts.

• We adopt transfer learning to reduce the overhead of
manual labeling of the training data of a subject library.
We evaluate the effectiveness of transfer learning across
libraries and programming languages and analyze the
factors that affect its effectiveness.

• We conduct extensive experiments to evaluate our ar-
chitecture as a whole as well its components. Our
results reveal insights into the design of effective mech-
anisms for API extraction tasks.

https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/NERFeatureFactory.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1: Statistics of Polysemous APIs

Library APIs Polysemous
APIs

Percentage

Matplotlib 3877 622 16.04%
Pandas 774 426 55.04%
Numpy 2217 917 41.36%
Opengl 850 52 6.12%
React 238 157 65.97%
JDBC 1468 633 43.12%

The remainder of the paper is organized as follows. Sec-
tion 2 reports our empirical studies of the characteristics of
API-names, API-mentions and discussion contexts. Section 3
defines the problem of API extraction. Section 4 and Sec-
tion 5 describe our neural architecture for API extraction and
the system implementation respectively. Section 6 reports
our experiment results and findings. Section 7 reviews the
related work. Section 8 concludes our work and discuss the
future work.

2 EMPIRICAL STUDIES OF API-NAMING AND API-
MENTION CHARACTERISTICS

In this work, we aim to develop machine learning based API
extraction method that is not only effective but also easy-
to-deploy across programming languages and libraries. To
understand the challenges in achieving this objective and
the potential solution space, we conduct empirical studies of
the characteristics of API names, API mentions in informal
texts, and discussion contexts in which APIs are mentioned.

We study six libraries: three Python libraries: Matplotlib
(data visualization), Pandas (machine learning), Numpy
(numeric computation), one C library OpenGL (computer
graphics), one JavaScript library React (graphical user inter-
face), and one Java library JDBC (database access). These
libraries come from the four popular programming lan-
guages, and they support very diverse functionalities for
computer programming.

First, we crawl API declarations of these libraries from
their official websites. When different APIs have a same
simple name but different arguments in a same library, we
treat such APIs as the same. We examine each API name
to determine if the simple name of an API is a common
word (e.g, apply, series, draw) that can be found in a general
English dictionary. We find that different libraries have
different percentages of APIs with common-word simple
names: OpenGL (6%), Matplotlib (16%), Numpy (41%), JDBC
(43%), Pandas (55%), React (66%). When these APIs are
mentioned by their common-word simple names, neither
character- nor word-level features can help to distinguish
such polysemous API mentions from common words. We
must resort to discussion contexts of API mentions.

Second, by checking post tags, we randomly sample
200 Stack Overflow posts for each of the six libraries. We
manually label API mentions in these posts. We examine
three characteristics of API mentions: whether API mentions
contain explicit orthographic features (package or module
names, parentheses, and/or dot), whether API mentions
are long tokens (> 10 characters), and whether the context
windows (preceding and succeeding 5 words) around the
API mentions contain common verbs and nouns (use, call,

TABLE 2: Statistics of API-Mention Characteristics

Library Orthographic Long tokens Common
context words

Matplotlib 62.38% 21.56% 20.64%
Pandas 67.11% 32.22% 34.23%
Numpy 65.63% 26.87% 23.53%
Opengl 33.73% 39.36% 20.80%
React 75.56% 20.00% 7.93%
JDBC 26.36% 61.82% 8.11%

Average 55.13% 33.64% 19.21%

function, method). Table 2 shows our analysis results. On
average 55.13% API mentions contain explicit orthographic,
and 33.64% API mentions are long tokens. Character-level
features would be useful for recognizing these API men-
tions. However, for the significant amount of API mentions
that do not have such explicit character-level features, we
need to resort to word- and/or sentence-content features,
for example, the words (e.g., use, call, function, method)
that often appear in the context window of an API mention,
to recognize API mentions.

Furthermore, we can observe that API-mention charac-
teristics are not tightly coupled with a particular program-
ming language or library. Instead, all six libraries exhibit cer-
tain degree of the three API-mention characteristics. But spe-
cific degrees vary across libraries. Fig. 2 visualizes the top 50
frequently-used words in the discussions of the six libraries.
We can observe that discussions of different libraries share
common words, but at the same time use library-specific
words (e.g., dataframe for Pandas, matrix for Numpy, figure
for Matplotlib, query for JDBC, render for OpenGL, event
for React). The commonalities of API mention characteristics
across libraries indicate the feasibility of transfer learning.
For example, orthographic, word and/or sentence-context
features learned from a source library could be applicable
to a target library. However, due to the variations of API-
name, API-mention and discussion-context characteristics
across libraries, directly applying the source-library trained
model to the target library may suffer from performance
degradation, unless the source and target libraries have very
similar characteristics. Therefore, fine-tuning the source-
library trained model with a small amount of target library
text would be necessary.

3 PROBLEM DEFINITION

In this work, we takes as input informal software text (e.g.,
Stack Overflow posts) that discusses the usage and issues
of a particular library. We assume that the software text
of multiple programming languages and libraries need to
be processed. Given a paragraph of informal software text,
our task is to recognize all API mentions (if any) in the
paragraph, as illustrated in the example in Fig. 1. API
mentions refer to tokens in the paragraph that represent
public modules, classes, methods or functions of a particular
library. To preserving the integrity of code-like tokens, an
API mention is defined as a single token rather than a span
of tokens when the given text is tokenized properly.

As our input is informal software text, APIs may not be
consistently mentioned in their formal full names. Instead,
APIs may be mentioned in abbreviations or synonyms,
such as pandas’s dataframe for panads.DataFrame, df.apply for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 2: Word Clouds of the Top 50 Frequent Words in the Discussions of the Six Libraries

pandas.DataFrame.apply(). APIs may also be mentioned in
their simple names, such as apply, series, dataframe, that can
also be common English words or computing terms in the
text. Furthermore, we do not assume that API mentions will
be consistently annotated with special tags. Therefore, our
approach takes plain text as input.

A related task to our work is API linking. API extraction
methods classify whether a token in text is an API mention
or not, while API linking methods link API mentions in
text to API entities in a knowledge base [15]. That is, API
extraction is the prerequsite for API linking. This work deals
with only API extraction.

4 OUR NEURAL ARCHITECTURE

We formulate the task of API extraction in informal soft-
ware texts as a sequence labeling problem, and present
a neural architecture that labels each token in an input
text as API or non-API. As shown in Fig. 3, our neural
architecture is composed of four main components: 1) a
character-level Convolutional Neural Network (CNN) for
extracting character-level features of a token (Section 4.1),
2) an unsupervised word embedding model for learning
word semantics of a token (Section 4.2), 3) a Bidirectional
Long Short-Term Memory network (Bi-LSTM) for extracting
sentence-context features (Section 4.3), and 4) a softmax
classifier for predicting the API or non-API label of a token
(Section 4.4). Our neural model can be trained end-to-end
with pairs of input texts and their corresponding API/non-
API label sequences. A model trained with one library’s text
can be transferred to another library’s text by fine-tuning

Fig. 3: Our Neural Architecture for API Extraction

source-library-trained components with the target library’s
text. (Section 4.5).

4.1 Extracting Char-Level Features by CNN

API mentions often have morphological features that dis-
tinguish them from normal English words. Such morpho-
logical features may appear in the beginning of a token
(e.g., the first letter capitalization System), in the middle
(e.g., the hyphen in read csv, the dot in pandas.series, the left

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 4: Our Character Vocabulary

Fig. 5: Character-Level CNN

parenthesis and comma in print(a,32)), or at the end (e.g.,
the right parenthesis in apply()). Morphological features may
also appear in combination, such as camelcase writing like
AbstractAction, a pair of parentheses like plot(). The long
length of some tokens like createdataset is one important
morphological feature as well. Due to the lack of universal
naming convention across libraries and the wide presence
of informal writing forms, informative morphological fea-
tures of API mentions often vary from one library’s text to
another.

Robust methods to extract morphological features from
tokens must take into account all characters of the token,
and determine which features are more important for a par-
ticular library’s APIs [16]. To that end, we use a character-
level CNN [17], which extracts local features in N-gram
characters of the token using a convolution operation and
then combines them using a max-pooling operation to create
a fixed-sized character-level embedding of the token [18],
[19].

Let V char be the vocabulary of characters for the soft-
ware texts from which we want to extract API mentions.
In this work, V char for all of our models consists of 92
characters, including 26 English letters (both upper and
lower case), 10 digits, 30 other characters (e..g, ’:’,’[’,’?’),
as listed in Fig. 4. Note that V char can be easily extended
for different datasets. Let Echar ∈ Rdchar×|V char| be the
character embedding matrix where dchar is the dimension of
character embeddings and |V char| is the vocabulary size (92
in this work). As illustrated in Fig. 3, Echar can be regarded
as a dictionary of character embeddings in which a column
dchar-dimensional vector corresponds to a particular char-
acter. The character embeddings are initialized as one-hot
vectors and then learned during the training of character-
level CNN. Given a character c ∈ V char , its embedding ec

can be retrieved by the matrix-vector product ec = Echarvc

where vc is a one-hot vector of size |V char| which has value
1 at index c and zero in all other positions.

Fig. 5 presents the architecture of our character-level
CNN. Given a token w in the input text, let’s assume w
is composed of M characters {c1, c2, ..., cM}. We first obtain
a sequence of character embeddings {ec1 , ec2 , ..., ecM } by

looking up the character embeddings matrix Echar . This
sequence of character embeddings (zero-padding at the
beginning and the end of the sequence) is the input to our
character-level CNN. In our application of CNN, because
each character is represented as a dchar-dimensional vector,
we use convolution filters with widths equal to the dimen-
sionality of the character embeddings (i.e., dchar). Then we
can vary the height h (or window size) of the filter, i.e.,
the number of adjacent characters considered jointly in the
convolution operation.

Let zm be the concatenation of the character embeddings
of cm (1 ≤ m ≤ M), the (h − 1)/2 left neighbors of cm,
and the (h − 1)/2 right neighbors of cm. A convolution
operation involves a filter W ∈ Rhdchar

(a matrix of h×dchar

dimensions) and a bias term b ∈ Rh, which is applied
repeatedly to each character window of size h in the input
sequence {c1, c2, ..., cM}:

om = ReLU(WT · zm + b)

where ReLU(x) = max(0, x) is the non-linear activa-
tion function. The convolution operations produce a M -
dimensional feature map for a particular filter. A 1D-max
pooling operation is then applied to the feature map to
extract a scalar (i.e., a feature vector of length 1) with the
maximum value in the M dimensions of the feature map.

The convolution operation extracts local features within
each character window of the given token, and using the
max over all character windows of the token, we extract
a global feature for the token. We can apply N filters to
extract different features from the same character window.
The output of the character-level CNN is an N -dimensional
feature vector representing the character-level embedding of
the given token. We denote this embedding as echarw for the
token w.

In our character-level CNN, the matrices Echar and W ,
and the vector b are parameters to be learned. The dimen-
sionality of the character embedding dchar , the number of
filters N , and the window size of the filters h are hyper-
parameters to be chosen by the user (see Section 5.2 for
model configuration).

4.2 Learning Word Semantics by Word Embedding

In informal software texts, the same API is often mentioned
in many non-standard abbreviations and synonyms [5]. For
example, the Pandas library is often written as pd, and its
module DataFrame is often written as df. Furthermore, there
is lack of consistent use of verb, noun and preposition in
the discussions [2]. For example, in the sentences “I have
decided to use apply ...”, “if you run apply on a series ...”,
and “I tested with apply ...”, users refer to a Pandas’s method
apply(), but their descriptions vary greatly.

Such variations result in out-of-vocabulary (OOV) issue
for a machine learning model [20], i.e., variations that have
not been seen in the training data. For the easy deployment
of a machine learning model for API extraction, it is imprac-
tical to address the OOV issue by manually labeling a huge
amount of data and developing a comprehensive gazetteer
of API names and their common variations [2]. However,
without the knowledge about variations of semantically

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

similar words, the trained model will be restricted to the
examples that it sees in the training data.

To address this dilemma, we propose to exploit unsu-
pervised word-embedding models [21], [22], [23], [24] to
learn distributed word representations from a large amount
of unlabeled text discussing a particular library. Many
studies [25], [26], [27] have shown that distributed word
representations can capture rich semantics of words such
that semantically similar words will have similar word
embeddings.

Let V word be the vocabulary of words for the corpus
of software texts to be processed. As illustrated in Fig. 3,
word-level embeddings are encoded by column vectors in
a word embedding matrix Eword ∈ Rdword×|V word| where
dword is the dimension of word embeddings and |V word|
is the vocabulary size. Each column Eword

i ∈ Rdword

corre-
sponds to the word-level embedding of the i-th word in
the vocabulary V word. We can obtain a token w’s word-
level embedding eword

w by looking up Eword with the word
w, i.e., eword

w = Ewordvw where vw is a one-hot vector of
size |V word| which has value 1 at index w and zero in all
other positions. The matrix Eword is to be learned using
unsupervised word embedding models (e.g., GloVe [28]),
and dword is a hyper-parameter to be chosen by the user
(see Section 5.2 for model configuration).

In this work, we adopt the Global Vectors for Word
Representation (GloVe) method [28] to learn the matrix
Eword. GloVe is an unsupervised algorithm for learning
word representations based on the statistics of word co-
occurrences in an unlabeled text corpus. It calculates the
word embeddings based on a word co-occurrence matrix
X . Each row in the word co-occurrence matrix corresponds
to a word, and each column corresponds to a context. Xij

is the frequency of word i co-occurring with word j, and
Xi =

Xik (1 ≤ k ≤ |V word|) is the total number of occur-

rences of word i in the corpus. The probability of word j that
occurs in the context of word i is Pij = P (j|i) = Xij/Xi.
We have log(Pij) = log(Xij)− log(Xi).

GloVe defines log(Pij) = eTwi
ewj where ewi and ewj

are the word embeddings to be learned for the word wi

and wj . This gives the constraint for each word pair as
log(Xij) = eTwi

ewj + bi + bj where b is the bias term
for ew. The cost function for minimizing the loss of word
embeddings is defined as:

V word

i,j=1

f(Xij)(e
T
wi
ewj

+ bi + bj − log(Xij))

where f(Xij) is a weighting function. That is, GloVe learns
word embeddings by a weighted least square regression
model.

4.3 Extracting Sentence-Context Features by Bi-LSTM

In informal software texts, many API mentions cannot be re-
liably recognized by simply examining a token’s character-
level features and word semantics. This is because many
APIs are named using common English words (e.g., series,
apply, plot) or common computing terms (e.g., dataframe,
sigmoid, histgram, argmax, zip, list). When such APIs are men-
tioned in their simple name, this results in a common-word

polesemy issue for API extraction [2]. In such situations, we
have to disambiguate the API sense of a common word from
the normal sense of the word.

To that end, we have to look into the sentence context in
which an API is mentioned. For example, by looking into
the sentence context of the two sentences in Fig. 1, we can
determine that the “apply” in the first sentence is an API
mention, while the “apply” in the second sentence is not an
API mention. Note that both the preceding and succeeding
context of the token “apply” are useful for disambiguating
the API or the normal sense of the token.

We use Recurrent Neural Network (RNN) to extract
sentence context features for disambiguating the API or the
normal sense of the word [29]. RNN is a class of neural
networks where connections between units form directed
cycles and it is widely used in software engineering do-
main [30], [31], [32], [33]. Due to this nature, it is especially
useful for tasks involving sequential inputs [29] like sen-
tences. In our task, we adopt a Bidirectional RNN (Bi-RNN)
architecture [34], [35], which is composed of two LSTMs,
one takes input from the beginning of the text forward till
a particular token, while the other takes input from the end
of the text backward till that token.

The input to an RNN is a sequence of vectors. In our
task, we obtain the input vector of a token in the input
text by concatenating the character-level embedding of the
token w and the word-level embedding of the token w,
i.e., echarw ⊕ eword

w . An RNN recursively maps an input
vector xt and a hidden state ht−1 to a new hidden state ht:
ht = f(ht−1, xt) where f is a non-linear activation function
(e.g., an LSTM unit used in this work). A hidden state
is a vector esent ∈ Rdsent

summarizing the sentence-level
features till the input xt, where dsent is the dimension of the
hidden state vector to be chosen by the user. We denote efsent
and ebsent as the hidden states computed by the forward
LSTM and the backward LSTM after reading the end of the
preceding and the succeeding sentence context of a token,
respectively. efsent and ebsent are concatenated into one vector
esentw as the Bi-LSTM output for the corresponding token w
in the input text.

As an input text (e.g., a Stack Overflow post) can be a
long text, modeling long-range dependencies in the text is
crucial for our task. For example, a mention of a library
name at the beginning of a post could be important for
detecting a mention of a method of this library later in
the post. Therefore, we adopt the LSTM unit [36], [37] in
our RNN. The LSTM is designed to cope with the gradient
vanishing problem in RNN. An LSTM unit consists of a
memory cell and three gates, namely the input, output
and forget gates. Conceptually, the memory cell stores the
past contexts, and the input and output gates allow the
cell to store contexts for a long period of time. Meanwhile,
some contexts can be cleared by the forget gate. Memory
cell and the three gates have weights and bias terms to
be learned during model training. Bi-LSTM can extract the
context feature. For instance, in the Pandas library sentence
”This can be accomplished quite simply with the DataFrame
method apply”, based on the context information from the
word method, the Bi-LSTM can help our model classify
the word apply as API mention, and the learning can be

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

transferred across different languages and libraries with
transfer learning.

4.4 API Labeling by Softmax Classification
Given the Bi-LSTM’s output vector esentw for a token w in
the input text, we train a binary softmax classifier to predict
whether the token is an API mention or a normal English
word. That is, we have two classes in this work, i.e., API or
non-API. Softmax predicts the probability for the j-th class
given a token’s vector esentw by:

P (j|esentw) =
exp(esentw WT

j)
2

k=1 exp(e
sent
w WT

k)

where the vectors Wk (k=1 or 2) are parameters to be
learned.

4.5 Library Adaptation by Transfer Learning
Transfer learning [12], [38] is a machine learning method
that stores knowledge gained while solving one problem
and applying it to a different but related problem. It helps
to reduce the amount of training data required for the target
problem. When transfer learning is used in deep learning,
it has been shown to be beneficial for narrowing down the
scope of possible models on a task by using the weights of
a trained model on a different but related task [14], and the
shared parameters transfer learning can help model adapt
the shared knowledge in similar context [39].

API extraction tasks for different libraries can be re-
garded as a set of different but related tasks. Therefore, we
use transfer learning to adapt a neural model trained with
one library’s text (source-library-trained model) for another
library’s text (target library). Our neural architecture is com-
posed of four main components: character-level CNN, word
embeddings, sentence Bi-LSTM, and softmax classifier. We
can transfer all or some source-library-trained model com-
ponents to a target library model. Without transfer learn-
ing, the parameters of a target-library model component
will be randomly initialized and then learned using the
target-library training data, i.e., trained from scratch. With
transfer learning, we use the parameters of source-library-
trained model components to initialize the parameters of
the corresponding target-library model components. After
transferring the model parameters, we can either freeze the
transferred parameters or fine-tune the transferred parame-
ters using the target-library training data.

5 SYSTEM IMPLEMENTATION

This section describes the current implementation 2 of our
neural architecture for API extraction.

5.1 Preprocessing and Tokenizing Input Text
Our current implementation takes as input the content of a
Stack Overflow post. As we want to recognize API mentions
within natural language sentences, we remove stand-alone
code snippets in <pre><code> tag. We then remove all
HTML tags in the post content to obtain the plain text

2. https://github.com/JOJO201/API Extraction

input (see Section 3 for the justification of taking plain text
as input). We develop a sentence parser to split the pre-
processed post text into sentences by punctuation. Follow-
ing [2], we develop a software-specific tokenizer to tokenize
the sentences. This tokenizer preserves the integrity of code-
like tokens. For example, it treats matplotlib.pyplot.imshow()
as a single token, instead of a sequence of 7 tokens, i.e.,
“matplotlib” “.” “pyplot” “.” “imshow” “(” “)” produced
by general English tokenizers.

5.2 Model Configuration
We now describe the hyper-parameter settings used in our
current implementation. These hyper-parameters are tuned
using the validation data during model training (see Sec-
tion 6.1.2 for the description of our dataset). We find that
the neural model has very similar performance across six
libraries dataset with the same hyper-parameters. Therefore,
we keep the same hyper-parameters for the six libraries
dataset, which can also avoid the difficulty in scaling dif-
ferent hyper-parameters.

5.2.1 Character-level CNN
We set the filter window size h = 3. That is, the convolution
operation extracts local features from 3 adjacent characters
at a time. The size of our current character vocabulary V char

is 92. Thus, we set the dimensionality of the character em-
bedding dchar at 92. We initialize the character embedding
with one-hot vector (1 at one character index and zero
in all other dimensions). The character embeddings will
be updated through back propagation during the training
of character-level CNN. We experiment 5 different N (the
number of filters): 20, 40, 60, 80, 100. With N = 40, the
CNN has an acceptable performance on the validation data.
With N = 60 and above, the CNN has almost the same
performance as N = 40, but it takes more training epochs
to research the acceptable performance. Therefore, we use
N = 40. That is, the character-level embedding of a token
has the dimension 40.

5.2.2 Pre-trained word embeddings
Our experiments involve six Python libraries: Pandas, Mat-
plotlib, NumPy, OpenGL, React and JDBC. We collect all
questions tagged with these six libraries and all answers to
these questions in the Stack Overflow Data Dump released
on March 18, 2018. We obtain a text corpus of 380971 posts.
We use the same preprocessing and tokenization steps as
described in Section 5.1 to preprocess and tokenize the
content of these posts. Then, we use the GloVe [28] to learn
word embeddings from this text corpus. We set the word
vocabulary size |V word| at 40000. The training epoch is set
at 100 to ensure the sufficient training of word embeddings.
We experiment four different dimensions of word embed-
dings dword: 50, 100, 200, 400. We use dword = 200 in
our current implementation as it produces a good balance
of the training efficiency and the quality of word embed-
dings for API extraction on the validation data. We also
experiment pre-trained word embeddings with all Stack
Overflow posts, which does not significantly affect the API
extraction performance but requires much longer time for
text preprocessing and word embeddings learning.

https://github.com/JOJO201/API_Extraction

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

5.2.3 Sentence-context Bi-LSTM
For the RNN, we use 50 hidden LTSM units to store the
hidden states. The dimension of the hidden state vector is
50. Therefore, the dimension of the output vector esentw is
100 (concatenating forward and backward hidden states). In
order to mitigate overfitting [40], a dropout layer is added
on the output of BLSTM, with the dropout rate 0.5.

5.3 Model Training
To train our neural model, we use input text and its
corresponding sequence of API/non-API labels (see Sec-
tion 6.1.2 for our data labeling process). The optimizer
used is Adam [41], which performs well for training RNN
including Bi-LSTM [35]. The training epoch is set at 40 times.
The best performance model on the validation set is saved
for testing. This model’s parameters are also saved for the
transfer learning experiments.

6 EXPERIMENTS

We conduct a series of experiments to answer the following
four research questions:
• RQ1: How well can our neural architecture learn multi-

level features from the input texts? Can the learned fea-
tures support high-quality API extraction, compared with
existing machine learning based API extraction methods?

• RQ2: What is the impact of the three feature extractors
(character-level CNN, word embeddings, and sentence-
context Bi-LSTM) on the API extraction performance?

• RQ3: How effective is transfer learning for adapting API
extraction models across libraries of the same language
with different amount of target-library training data?

• RQ4: How effective is transfer learning for adapting API
extraction models across libraries of different languages
with different amount of target-library training data?

6.1 Experiments Setup
This section describes the libraries used in our experiments,
how we prepare training and testing data, and the evalua-
tion metrics of API extraction performance.

6.1.1 Studied libraries
Our experiments involve three Python libraries (Pandas,
NumPy and Matplotlib), one Java library (JDBC), one
JavaScript library (React), and one C library (OpenGL). As
reported in Section 2, these six libraries support very di-
verse functionalities for computer programming, and have
distinct API-naming and API mention characteristics. Using
these libraries, we can evaluate the effectiveness of our
neural architecture for API extraction in very diverse data
settings. We can also gain insights into the effectiveness of
transfer learning for API extraction and the transferability
of our neural architecture in different settings.

6.1.2 Dataset
We collect Stack Overflow posts (questions and their an-
swers) tagged with pandas, numpy, matplotlib, opengl, react
or jdbc as our experimental data. We use Stack Overflow
Data Dump released on March 18, 2018. In this data dump,

TABLE 3: Basic Statistics of Our Dataset

Library Posts Sentences API mentions Tokens
Matplotlib 600 4920 1481 47317

Numpy 600 2786 1552 39321
Pandas 600 3522 1576 42267
Opengl 600 3486 1674 70757
JDBC 600 4205 1184 50861
React 600 3110 1262 42282
Total 3600 22029 8729 292805

380971 posts are tagged with one of the six studied libraries.
Our data collection process follows four criteria. First, the
number of posts selected and the number of API mentions
in these posts should be at the same order of magnitude.
Second, API mentions should exhibit the variations of API
writing forms commonly seen on Stack Overflow. Third, the
selection should avoid repeatedly selecting frequently men-
tioned APIs. Fourth, the same post should not appear in the
dataset for different libraries (one post may be tagged with
two or more studied-library tags). The first criterion ensures
the fairness of comparison across libraries, the second and
third criteria ensure the representativeness of API mentions
in the dataset, and the fourth criterion ensures that there is
no repeated data in different datasets.

We finally include 3600 posts (600 for each library) in our
dataset and each post has at least one API mention.3 Table 3
summarizes the basic statistics of our dataset. These posts
have in total 22029 sentences, 292805 token occurrences,
and 41486 unique tokens after data preprocessing and to-
kenization. We manually label the API mentions in the
selected posts. 6421 sentences (34.07%) contains at least one
API mention. Our dataset has in total 8729 API mentions.
The selected Matplotlib, NumPy, Pandas, OpenGL, JDBC and
React posts have 1481, 1552, 1576, 1674, 1184 and 1262 API
mentions, which refer to 553, 694, 293, 201, 282 and 83
unique APIs of the six libraries, respectively. In addition,
we randomly sample 100 labelled Stack Overflow posts for
each library dataset. Then, we examine each API mention to
determine whether it is a simple name or not, and we find
that among the 600 posts, there are 1634 API mentions of
which 694 (42.47%) are simple API names. Our dataset not
only contains a large number of API mentions in diverse
writing forms, but also contains rich discussion context
around API mentions. This makes it suitable for the training
of our neural architecture, the testing of its performance,
and the study of model transferability.

We randomly split the 600 posts of each library into three
subsets by 6:2:2 ratio: 60% as training data, 20% as validation
data for tuning model hyper-parameters, and 20% as testing
data to answer our research questions. Since cross validation
will cost a great deal of time and our training dataset is un-
biased (proved in Section 6.4), cross validation is not used.
Our experiment results also show that the training dataset
is enough to train a high-performance neural network.
Besides, the performance of the model in target library can
be improved by adding more training dataset from other
libraries. And if more training dataset is added, there is no
need to label a new validate dataset for the target library
to re-tune the hyper-parameters, because we find that the

3. https://drive.google.com/drive/folders/
1f7ejNVUsew9l9uPCj4Xv5gMzNbqttpoa?usp=sharing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 4: Comparison of CRF Baselines [2] and Our Neural Model for API Extraction

Basic CRF Full CRF Our method

Library Prec Recall F1 Prec Recall F1 Prec Recall F1

Matplotlib 67.35 47.84 56.62 89.62 61.31 72.82 81.5 83.92 82.7
NumPy 75.83 39.91 52.29 89.21 49.31 63.51 78.24 62.91 69.74
Pandas 62.06 70.49 66.01 97.11 71.21 82.16 82.73 85.3 82.80
Opengl 43.91 91.87 59.42 94.57 70.62 80.85 85.83 83.74 84.77
JDBC 15.83 82.61 26.58 87.32 51.40 64.71 84.69 55.31 66.92
React 16.74 88.58 28.16 97.42 70.11 81.53 87.95 78.17 82.77

neural model has very similar performance with the same
hyper-parameters under different dataset settings.

6.1.3 Evaluation metrics
We use precision, recall, and F1-score to evaluate the per-
formance of an API extraction method. Precision measures
what percentage the recognized API mentions by a method
are correct. Recall measures what percentage the API men-
tions in the testing dataset are recognized correctly by a
method. F1-score is the harmonic mean of precision and
recall, i.e., 2 ∗ ((precision ∗ recall)/(precision+ recall)).

6.2 Performance of Our Neural Model (RQ1)
Motivation: Recently, linear-chain CRF has been used to
solve the API extraction problem in informal text [2]. They
show that machine-learning based API extraction with that
of several outperforms several commonly-used rule-based
methods [2], [42], [43]. The approach in [2] relies on human-
defined orthographic features, two different unsupervised
language models (class-based Brown clustering and neural-
network based word embedding) and API gazetteer features
(API inventory). In contrast, our neural architecture uses
neural networks to automatically learn character-, word-
and sentence-level features from the input texts. The first
RQ is to confirm the effectiveness of these neural-network
feature extractors for API extraction tasks by comparing
the overall performance of our neural architecture with the
performance of the linear-chain CRF with human-defined
features for API extraction.
Approach: We use the implementation of the CRF model
in [2] to build the two CRF baselines. The basic CRF baseline
uses only the orthographic features developed in [2]. The
full CRF baseline uses all orthographic, word-clusters and
API gazetteer features developed in [2]. The basic CRF base-
line is easy to deploy because it uses only the orthographic
features in the input texts, but not any advanced word-
clusters and API gazetteer features. And the self-training
process is not used in these two baselines, since we have
sufficient training data. In contrast, the full CRF baseline
uses advanced features so that it is not as easy-to-deploy as
the basic CRF. But the full CRF has much better performance
than the basic CRF as reported in [2]. Comparing our model
with these two baselines, we can understand whether our
model can achieve a good tradeoff between easy-to-deploy
and high performance. Note that as Ye et al. [2] already
demonstrates the superior performance of machine-learning
based API extraction methods over rule-based methods, we
do not consider rule-based baselines for API extraction in
this study.
Results: From Table 4, we can see that:

• Although linear CRF with full features has close performance to
our model, linear CRF with only orthographic features performs
poorly in distinguishing API tokens from non-API tokens. The
best F1-score of the basic CRF is only 0.66 for Pandas.
The F1-score of the basic CRF for Matplotlib, Numpy and
OpenGL is 0.52-0.59. For JDBC and React, the F1-score of
the basic CRF is below 0.3. Our results are consistent with
the results in [2] when advanced word-clusters and API-
gazetteer features are ablated. Compared with the basic
CRF, the full CRF performs much better. For Pandas, JDBC
and React, the full CRF has very close performance to our
model. But for Matplotlib, Numpy and OpenGL, our model
still outperforms the full CRF by at least four points in
F1-score.

• Multi-level feature embedding by our neural architecture is
effective in distinguishing API tokens from non-API tokens
in the resulting embedding space. All evaluation metrics of
our neural architecture are significantly higher than those
of the basic CRF. Although our neural architecture per-
forms relatively worse on NumPy and JDBC, its F1-score
is still much higher than the F1-score of the basic CRF
on NumPy and JDBC. We examine false positives (non-
API token recognized as API) and false negatives (API
token recognized as non-API) by our neural architecture
on NumPy and JDBC. We find that many false positives
and false negatives involve API mentions composed of
complex strings, for example, array expressions for Numpy
or SQL statements for JDBC. It seems that neural networks
learn some features from such complex strings that may
confuse the model and cause the failure to tell apart API
tokens from non-API ones. Furthermore, by analysing the
classification results for different API mentions, we find
that our model has good generalizability on different API
functions.

With linear CRF for API extraction, we cannot achieve a
good tradeoff between easy-to-deploy and high performance. In
contrast, our neural architecture can extract effective character-,
word- and sentence-level features from the input texts and the
extracted features alone can support high-quality API extraction,
without using any hand-crafted advanced features such as word
clusters, API gazetteers.

6.3 Impact of Feature Extractors (RQ2)
Motivation: Although our neural architecture achieves very
good performance as a whole, we would like to further
investigate how much different feature extractors (character-
level CNN, word embeddings, and sentence-context Bi-
LSTM) contribute to this good performance, and how dif-
ferent features affect precision and recall of API extraction.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 5: The Results of Feature Ablation Experiments

Ablating char CNN Ablating Word Embeddings Ablating Bi-LSTM All features
Prec Recall F1-score Prec Recall F1-score Prec Recall F1-score Prec Recall F1-score

Matplotlib 75.70 72.32 73.98 81.75 63.99 71.79 82.59 69.34 75.44 81.50 83.92 82.70
Numpy 81.00 60.40 69.21 79.31 58.47 67.31 80.62 56.67 66.44 78.24 62.91 69.74
Pandas 80.50 83.28 81.82 81.77 68.01 74.25 83.22 75.22 79.65 82.73 85.30 82.80
Opengl 77.58 85.37 81.29 83.07 68.03 75.04 98.52 72.08 83.05 85.83 83.74 84.77
JDBC 68.65 61.25 64.47 64.22 65.62 64.91 99.28 43.12 66.13 84.69 55.31 66.92
React 69.90 85.71 77.01 84.37 75.00 79.41 98.79 65.08 78.47 87.95 78.17 82.77

Approach: We ablate one kind of feature at a time from
our neural architecture. That is, we obtain a model without
character-level CNN, one without word embeddings, and
one without sentence-context Bi-LSTM. We compare the
performance of these three models with that of the model
with all three feature extractors.

Results: In Table 5, we highlight in bold the largest drop in
each metric for a library when ablating a feature, compared
with that metric with all features. We underline the increase
in each metric for a library, when ablating a feature, com-
pared with that metric with all features. We can see that:

• The performance of our neural architecture is contributed by
the combined action of all its features. Ablating any of the
features, the F1-score degrades. Ablating word embed-
dings or Bi-LSTM causes the largest drop in F1-score
for four libraries, while ablating char-CNN causes the
largest drop in F1-score for two libraries. Feature ablation
has higher impact on some libraries than others. For
example, ablating char-CNN, word embeddings and Bi-
LSTM all cause significant drop in F1-score for Matplotlib,
and ablating word embeddings causes significant drop
in F1-score for Pandas and React. In contrast, ablating a
feature causes relative minor drop in F1-score for Numpy,
JDBC and React. This indicates different levels of features
learned by our neural architecture can be more distinct for
some libraries, but more complementary for others. When
different features are more distinct from one another,
achieving good API extraction performance relies more
on all the features.

• Different features play different roles in distinguishing API
tokens from non-API tokens. Ablating char-CNN causes
the drop in precision for five libraries, except Numpy.
The precision degrades rather significantly for Matplotlib
(7.1%), OpenGL (9.6%), JDBC (18.9%) and React (20.5%).
In contrast, ablating char-CNN causes significant drop in
recall only for Matplotlib (13.8%). For JDBC and React, ab-
lating char-CNN even causes significant increase in recall
(10.7% and 9.6% respectively). Different from the impact
of ablating char-CNN, ablating word embeddings and Bi-
LSTM usually causes the largest drop in recall, ranging
from 9.9% drop for Numpy to 23.7% drop for Matplotlib.
Ablating word embeddings causes significant drop in
precision only for JDBC, and it causes small changes in
precision for the other five libraries (three with small drop
and two with small increase). Ablating Bi-LSTM causes
the increase in precision for all six libraries. Especially
for OpenGL, JDBC and React, when ablating Bi-LSTM, the
model has almost perfect precision (around 99%), but this
comes with a significant drop in recall (13.9% for OpenGL,
19.3% for JDBC and 16.7% React).

All feature extractors are important for high-quality API ex-
traction. Char-CNN is especially useful for filtering out non-
API tokens, while word embeddings and Bi-LSTM are especially
useful for recalling API tokens.

6.4 Effectiveness of Within-Language Transfer Learn-
ing (RQ3)
Motivation: As described in Section 6.1.1, we intentionally
choose three different-functionality Python libraries: Pandas,
Matplotlib, NumPy. Pandas and NumPy are functionally sim-
ilar, while the other two pairs are more distant. The three
libraries also have different API-naming and API-mention
characteristics (see Section 2). We want to investigate the
effectiveness of transfer learning for API extraction across
different pairs of libraries and with different amount of
target-library training data.
Approach: We use one library as source library and one of
the other two libraries as target library. We have six transfer-
learning pairs for the three libraries. We denote them as
source-library-name → target-library-name, such as Pandas →
NumPy which represents transferring Pandas-trained model
to NumPy text. Two of these six pairs (Pandas → NumPy and
NumPy → Pandas) are similar-libraries transfer (in terms of
library functionalities and API-naming/mention character-
istics), while the other four pairs involving Matplotlib are
relatively more-distant-libraries transfer.

TABLE 6: NumPy (NP) or Pandas (PD) → Matplotlib (MPL)
NP→MPL PD→MPL MPL

Prec Recall F1 Prec Recall F1 Prec Recall F1
1/1 82.64 89.29 85.84 81.02 80.06 80.58 87.67 78.27 82.70
1/2 81.84 84.52 83.16 71.61 83.33 76.96 81.38 70.24 75.40
1/4 71.83 75.89 73.81 67.88 77.98 72.65 81.22 55.36 65.84
1/8 70.56 75.60 72.98 69.66 73.81 71.71 75.00 53.57 62.50
1/16 73.56 72.02 72.78 66.48 72.02 69.16 80.70 27.38 40.89
1/32 72.56 78.83 73.69 71.47 69.35 70.47 97.50 11.60 20.74
DU 72.54 66.07 69.16 76.99 54.76 64.00

TABLE 7: Matplotlib (MPL) or Pandas (PD) → NumPy (NP)
MPL→NP PD→NP NP

Prec Recall F1 Prec Recall F1 Prec Recall F1
1/1 86.85 77.08 81.68 77.51 67.50 72.16 78.24 62.92 69.74
1/2 78.8 82.08 80.41 70.13 67.51 68.79 75.13 60.42 66.97
1/4 93.64 76.67 80.00 65.88 70.00 67.81 77.14 45.00 56.84
1/8 73.73 78.33 75.96 65.84 66.67 66.25 71.03 42.92 53.51
1/16 76.19 66.67 71.11 58.33 64.17 61.14 57.07 48.75 52.58
1/32 75.54 57.92 65.56 60.27 56.25 58.23 72.72 23.33 35.33
DU 64.16 65.25 64.71 62.96 59.32 61.08

We use gradually-reduced target-library training data
(1 for all data, 1/2, 1/4, ..., 1/32) to fine-tune the source-
library-trained model. We also train a target-library model
from scratch (i.e., with randomly initialized model parame-
ters) using the same proportion of the target-library training
data for comparison. We also use the source-library-trained

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 8: Matplotlib (MPL) or NumPy (NP) → Pandas (PD)
MPL→PD NP→PD PD

Prec Recall F1 Prec Recall F1 Prec Recall F1
1/1 84.97 89.62 87.23 86.86 87.61 87.23 80.43 85.30 82.80
1/2 86.18 84.43 85.30 83.97 83.00 83.48 88.01 74.06 80.43
1/4 81.07 87.61 84.21 81.07 82.70 81.88 76.50 76.95 76.72
1/8 87.54 80.98 84.13 85.76 76.37 80.79 69.30 83.29 75.65

1/16 82.04 78.96 80.47 82.45 75.79 78.98 84.21 50.72 53.31
1/32 81.31 75.22 78.14 81.43 72.05 76.45 84.25 30.84 45.14
DU 71.65 40.06 51.39 75.00 35.45 48.14

TABLE 9: Averaged Matplotlib (MPL) or NumPy
(NP)→Pandas (PD)

MPL→PD NP→PD
Prec Recall F1 Prec Recall F1

1/16 83.33 77.81 80.43 83.39 75.22 79.09
1/32 79.50 73.78 76.53 86.15 71.15 78.30

model directly without any fine-tuning (i.e. 0/1 target-
library data) as a baseline. We also randomly select 1/16 and
1/32 training data for NumPy → Pandas and Matplotlib →
Pandas for 10 times, and train the model for each time. Then
we calculate the averaged precision and recall values. Based
on the averaged precision and recall values, we calculate the
averaged F1-score.
Results: Table 6, Table 7 and Table 8 show the experiment
results of the six pairs of transfer learning. Table 9 shows
the averaged experiment results of NumPy → Pandas and
Matplotlib → Pandas with 1/16 and 1/32 training data.
Acronyms stand for: MPL (Matplotlib), NP (NumPy), PD
(Pandas), DU (Direct Use). The last column is the results of
training the target-library model from scratch. We can see
that:
• Transfer learning can produce a better-performance target-

library model than training the target-library model from
scratch with the same proportion of training data. This is ev-
ident as the F1-score of the target-library model obtained
by fine-tuning the source-library-trained model is higher
than the F1-score of the target-library model trained from
scratch in all the transfer settings but PD → MPL at
1/1. Especially for NumPy, the NumPy model trained
from scratch with all Numpy training data has F1-score
69.74. However, the NumPy model transferred from the
Matplotlib model has F1-score 81.68 (17.1% improvement).
For the Matplotlib → Nump transfer, even with only 1/16
Numpy training data for fine-tuning, the F1-score (71.11) of
the transferred NumPy model is still higher than the F1-
score of the NumPy model trained from scratch with all
Numpy training data. This suggests that transfer learning
may boost the model performance even for the difficult
dataset. Such performance boost by transfer learning has
also been observed in many studies [14], [44], [45]. The
reason is that a target-library model can “reuse” much
knowledge in the source-library model, rather than hav-
ing to learning completely new knowledge from scratch.

• Transfer learning can reduce the amount of target-library train-
ing data required to obtain a high-quality model. For four out
of six transfer-learning pairs (NP → MPL, MPL → NP, NP
→ PD, MPL → PD), the reduction ranges from 50% (1/2)
to 87.5% (7/8) while the resulting target-library model still
has better F1-score than the target-library model trained
from scratch using all target-library training data. If we al-
low a small degradation of F1-score (e.g., 3% of the F1-sore

for the target-library model trained from scratch using
all target-library training data), the reduction can go up
to 93.8% (15/16). For example, for Matplotlib → Pandas,
using 1/16 Pandas training data (i.e., only about 20 posts)
for fine-tuning, the obtained Pandas model still has F1-
score 80.47.

• Transfer learning is very effective in few-shot training settings.
Few-shot training refers to training a model with only
a very small amount of data [46]. In our experiments,
using 1/32 training data, i.e., about 10 posts for transfer
learning, the F1-score of the obtained target-library model
is still improved a few points for NP → MPL, PD → MPL
and MPL → NP, and is significantly improved for MPL →
PD (52.9%) and NP → PD (58.3%), compared with directly
reusing source-library-trained model without fine-tuning
(DU row). Furthermore, the averaged results of NP →
PD and MPL → PD for 10 randomly selected 1/16 and
1/32 training data are similar to the results in Table 8,
and the variances are all smaller than 0.3, which shows
our training data is unbiased. Although the target-library
model trained from scratch still has reasonable F1-score
with 1/2 to 1/8 training data, they become completely
useless with 1/16 or 1/32 training data. In contrast, the
target-library models obtained through transfer learning
have significant better F1-score in such few shot settings.
Furthermore, training a model from scratch using few-
shot data may result in abnormal increase in precision
(e.g., MPL at 1/16 and 1/32, NP at 1/32, PD at 1/32) or in
recall (e.g., NP at 1/16), compared with training the model
from scratch using more data. This abnormal increase in
precision (or recall) comes with a sharp decrease in recall
(or precision). Our analysis shows that this phenomenon
is caused by the biased training data in few-shot settings.
In contrast, the target-library models obtained through
transfer learning can reuse knowledge in the source model
and produce a much more balanced precision and recall
(thus much better F1-score) even in the face of biased few-
shot training data.

• The effectiveness of transfer learning does not correlate with
the quality of source-library-trained model. Based on a not-so-
high-quality source model (e.g., NumPy), we can still ob-
tain a high-quality target model through transfer learning.
For example, NP → PD results in a Pandas model with F1-
score > 80 using only 1/8 of Pandas training data. On the
other hand, a high-quality source model (e.g., Pandas) may
not boost the performance of the target model. Among
all 36 transfer settings, we have one such case, i.e., PD
→ MPL at 1/1. The Matplotlib model transferred from
the Pandas model using all Matplotlib training data is
slightly worse than the Matplotlib model trained from
scratch using all training data. This can be attributed to
the differences of API naming characteristics between the
two libraries (see the last bullet).

• The more similar the functionalities and the API-
naming/mention characteristics between the two libraries are,
the more effectiveness the transfer learning can be. Pan-
das and NumPy have similar functionalities and API-
naming/mention characteristics. For PD → NP and NP
→ PD, the target-library model is less than 5% worse in
F1-score with 1/8 target-library training data, compared
with the target-library model trained from scratch using

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

all training data. In contrast, PD → MPL has 6.9% drop
in F1-score with 1/2 training data, and NP → MPL has
10.7% drop in F1-score with 1/4/ training data, compared
with the Matplotlib model trained from scratch using all
training data.

• Knowledge about non-polysemous APIs seems easy to expand,
while knowledge about polysemous APIs seems difficult to
adapt. Matplotlib has the least polysemous APIs (16%),
and Pandas and NumPy has much more polysemous APIs.
Both MPL → PD and MPL → NP have high-quality
target models even with 1/8 target-library training data.
The transfer learning seems to be able to add the new
knowledge “common words can be APIs” to the target-
library model. In contrast, NP → MPL requires at 1/2
training data to have a high-quality target model (F1-score
83.16), and for PD → MPL, the Matplotlib model (F1-score
80.58) by transfer learning with all training data is even
slightly worse than the model trained from scratch (F1-
score 82.7). These results suggest that it can be difficult
to adapt the knowledge “common words can be APIs”
learned from NumPy and Pandas to Matplotlib which does
not have many common-word APIs.

Transfer learning can effectively boost the performance of target-
library model with less demand on target-library training data.
Its effectiveness correlates more with the similarity of library
functionalities and and API-naming/mention characteristics
than the initial quality of source-library model.

6.5 Effectiveness of Across-Language Transfer Learn-
ing (RQ4)
Motivation: In the RQ3, we investigate the transferability
of API extraction model across three Python libraries. In
the RQ4, we want to further investigate the transferability
of API extraction model in a more challenging setting, i.e.,
across different programming languages and across libraries
with very different functionalities.
Approach: For the source language, we choose Python, one
of the most popular programming languages. We randomly
select 200 posts in each dataset of the three Python libraries,
and combine these 600 posts as the training data for Python
API extraction model. For the target languages, we choose
three other popular programming languages: Java, JavaScript
and C. That is, we have three transfer-learning pairs in this
RQ: Python → Java, Python → JavaScript, and Python →
C. For the three target languages, we intentionally choose
the libraries that support very different functionalities from
the three Python libraries. For Java, we choose JDBC (an
API for accessing relational database). For JavaScript, we
choose React (a library for web graphical user interface).
For C, we choose OpenGL (a library for 3D graphics). As
described in Section 6.1.2, we label 600 posts for each target-
language library for the experiments. As in the RQ3, we
use gradually-reduced target-language training data to fine-
tune the source-language-trained model.
Results: Table 10, Table 11 and Table 12 show the experiment
results for the three across-language transfer-learning pairs.
These three tables use the same notation as Table 6, Table 7
and Table 8. We can see that:
• Directly reusing the source-language-trained model on the

target-language text produces unacceptable performance. For

TABLE 10: Python → Java

Python→Java Java
Prec Recall F1 Prec Recall F1

1/1 77.45 66.56 71.60 84.69 55.31 66.92
1/2 72.20 62.50 67.06 77.38 53.44 63.22
1/4 69.26 50.00 58.08 71.22 47.19 56.77
1/8 50.00 64.06 56.16 75.15 39.69 51.94

1/16 55.71 48.25 52.00 75.69 34.06 46.98
1/32 56.99 40.00 44.83 77.89 23.12 35.66
DU 44.44 28.75 34.91

TABLE 11: Python → JavaScript

Python→JavaScript JavaScript
Prec Recall F1 Prec Recall F1

1/1 77.45 81.75 86.19 87.95 78.17 82.77
1/2 86.93 76.59 81.43 87.56 59.84 77.70
1/4 86.84 68.65 74.24 83.08 66.26 73.72
1/8 81.48 61.11 69.84 85.98 55.95 67.88

1/16 71.11 63.49 68.08 87.38 38.48 53.44
1/32 66.67 52.38 58.67 65.21 35.71 46.15
DU 51.63 25.00 33.69

the three Python libraries, directly reusing a source-
library-trained model on the text of a target-library may
still have reasonable performance, for example, NP →
MPL (F1-score 69.16), PD → MPL (64.0), MPL → NP
(64.71). However, for the three across-language transfer-
learning pairs, the F1-score of direct model reuse is very
low: Python → Java (34.91), Python → JavaScript (33.69),
Python → C (35.95). These results suggest that there are
still certain level of commonalities between the libraries
with similar functionalities and of the same programming
language, so that the knowledge learned in the source-
library model may be largely reused in the target-library
model. In contrast, the libraries of different functionali-
ties and programming languages have much fewer com-
monalities, which makes it infeasible to directly deploy
a source-language-trained model to the text of another
language. In such cases, we have to either train the model
for each language or library from scratch, or we may ex-
ploit transfer learning to adapt a source-language-trained
model to the target-language text.

• Across-language transfer learning holds the same performance
characteristics as within-language transfer learning, but it
demands more target-language training data to obtain a high-
quality model than within-language transfer learning. For
Python → JavaScript and Python → C, with as minimum
as 1/16 target-language training data, we can obtain
a fine-tuned target-language model whose F1-score can
double that of directly reusing the Python-trained model
to JavaScript or C text. For Python → Java, fine-tuning the
Python-trained model with 1/16 Java training data boosts
the F1-score by 50%, compared with directly applying the
Python-trained model to Java text. For all the transfer-
learning settings in Table 10, Table 11 and Table 12,
the fine-tuned target-language model always outperforms
the corresponding target-language model trained from
scratch with the same amount of target-language training
data. However, it requires at least 1/2 target-language
training data to fine-tune a target-language model to
achieve the same level of performance as the target-
language model trained from scratch with all target-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 12: Python → C

Python→C C
Prec Recall F1 Prec Recall F1

1/1 89.87 85.09 87.47 85.83 83.74 84.77
1/2 85.35 83.73 84.54 86.28 76.69 81.21
1/4 83.83 75.88 79.65 82.19 71.27 76.34
1/8 74.32 73.71 74.01 78.68 68.02 72.97

1/16 75.81 69.45 72.60 88.52 57.10 69.42
1/32 69.62 65.85 67.79 87.89 45.25 59.75
DU 56.49 27.91 35.95

language training data. For the within-language transfer
learning, achieving this result may require as minimum as
1/8 target-library training data.

Software text of different programming languages and of li-
braries with very different functionalities increases the difficulty
of transfer learning, but transfer learning can still effectively
boost the performance of the target-language model with 1/2
less target-language training data, compared with training the
target-language model from scratch with all training data.

6.6 Threats to Validity

The major threat to internal validity is the API labeling
errors in the dataset. In order to decrease errors, the first two
authors first independently label the same data and then
resolve the disagreements by discussion. Furthermore, in
our experiments, we have to examine many API extraction
results. We only spot a few instances of overlooked or
erroneously-labeled API mentions. Therefore, the quality of
our dataset is trustworthy.

The major threat to external validity is the generalization
of our results and findings. Although we invest significant
time and effort to prepare datasets, conduct experiments
and analyze results, our experiments involve only six li-
braries of four programming languages. The performance of
our neural architecture, and especially the findings on trans-
fer learning, could be different with other programming
languages and libraries. Furthermore, the software text in
all the experiments comes from a single data source, i.e.,
Stack Overflow. Software text from other data sources may
exhibit different API-mention and discussion-context char-
acteristics, which may affect the model performance. In the
future, we will reduce this threat by applying our approach
to more languages/libraries and informal software text from
other data sources (e.g., developer emails).

7 RELATED WORK

APIs are the core resources for software development and
API related knowledge is widely present in software texts,
such as API reference documentation, Q&A discussions,
bug reports. Researchers have proposed many API extrac-
tion methods to support various software engineering tasks,
especially document traceability recovery [42], [47], [48],
[49], [50]. For example, RecoDoc [3] extracts Java APIs
from several resources and then recover traceability across
different sources. Subramanian et al. [4] use code context
information to filter candidate APIs in a knowledge base
for an API mention in a partial code fragment. Christoph
and Robillard [51] extracts sentences about API usage from

Stack Overflow and use them to augment API reference
documentation. These works focus mainly on the API link-
ing task, i.e., linking API mentions in text or code to some
API entities in a knowledge base. In terms of extracting API
mentions in software text, they rely on rule-based methods,
for example regular expressions of distinct orthographic
features of APIs, such as camelcase, special characters (e.g.,
. or ()), and API annotations.

Several studies, such as Bacchelli et al [42], [43] and Ye
et al. [2], show that regular expressions of distinct ortho-
graphic features are not reliable for API extraction tasks in
informal texts, such as emails, Stack Overflow posts. Both
variations of sentence formats and the wide presence of
mentions of polysemous API simple names pose a great
challenge for API extraction in informal texts. However,
this challenge is generally avoided by considering only
API mentions with distinct orthographic features in existing
works [3], [51], [52].

Island parsing provides a more robust solution for ex-
tracting API mentions from texts. Using an island grammar,
we can separate the textual content into constructs of in-
terest (island) and the remainder (water) [53]. For example,
Bacchelli et al. [54] uses island parsing to extract code frag-
ments from natural language text. Rigby and Robillard [52]
also use island parser to identify code-like elements that can
potentially be APIs. However, these island parsers cannot
effectively deal with mentions of API simple names that are
not suffixed by (), such as apply and series in Fig. 1, which
are very common writing forms of API methods in Stack
Overflow discussions [2].

Recently, Ye et al. [10] proposes a CRF based approach
for extracting methods of software entities, such as pro-
gramming languages, libraries, computing concepts, and
APIs from informal software texts. They report that extract
API mentions is much more challenging than extracting
other types of software entities. A follow-up work by Ye
et al. [2] proposes to use a combination of orthographic,
word-clusters and API gazetteer features to enhance the
CRF’s performance on API extraction tasks. Although these
proposed features are effective, they require much manual
effort to develop and tune. Furthermore, enough training
data has to be prepared and manually labeled for applying
their approach to the software text of each library to be
processed. These overheads pose a practical limitation to
deploying their approach to a larger number of libraries.

Our neural architecture is inspired by recent advances
of neural network techniques for NLP tasks. For example,
both RNNs and CNNs have been used to embed character-
level features for question answering [55], [56], machine
translation [57], text classification [58], and part-of-speech
tagging [59]. Some researchers also use word embeddings
and LSTMs for NER [35], [60], [61]. To the best of our knowl-
edge, our neural architecture is the first machine learning
based API extraction method that combines these proposals
and customize them based on the characteristics of soft-
ware texts and API names. Furthermore, the design of our
neural architecture also takes into account the deployment
overhead of the API methods for multiple programming
languages and libraries, which has never been explored for
API extraction tasks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

8 CONCULSION

This paper presents a novel multi-layer neural architecture
that can effectively learn important character-, word- and
sentence-level features from informal software texts for ex-
tracting API mentions in text. The learned features has supe-
rior performance than human-defined orthographic features
for API extraction in informal software texts. This makes our
neural architecture easy to deploy, because the only input it
requires is the texts to be processed. In contrast, existing
machine learning based API extraction methods have to
use additional hand-crafted features such as word clusters
or API gazetteers, in order to achieve the performance
close to that of our neural architecture. Furthermore, as the
features are automatically learned from the input texts, our
neural architecture is easy to transfer and fine-tune across
programming languages and libraries. We demonstrate its
transferability across three Python libraries and across four
programming languages. Our neural architecture, together
with transfer learning, makes it easy to train and deploy
a high-quality API extraction model for multiple program-
ming languages and libraries, with much less overall effort
required for preparing training data and effective features.
In the future, we will further investigate the performance
and the transferability of our neural architecture in many
other programming languages and libraries, moving to-
wards real-world deployment of machine learning based
API extraction methods.

REFERENCES

[1] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd
documentation: Exploring the coverage and the dynamics of api
discussions on stack overflow.”

[2] D. Ye, Z. Xing, C. Y. Foo, J. Li, and N. Kapre, “Learning to extract
api mentions from informal natural language discussions,” in Soft-
ware Maintenance and Evolution (ICSME), 2016 IEEE International
Conference on. IEEE, 2016, pp. 389–399.

[3] B. Dagenais and M. P. Robillard, “Recovering traceability links
between an api and its learning resources,” in Software Engineering
(ICSE), 2012 34th International Conference on. IEEE, 2012, pp. 47–57.

[4] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api doc-
umentation,” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 643–652.

[5] C. Chen, Z. Xing, and X. Wang, “Unsupervised software-specific
morphological forms inference from informal discussions,” in Pro-
ceedings of the 39th International Conference on Software Engineering.
IEEE Press, 2017, pp. 450–461.

[6] X. Chen, C. Chen, D. Zhang, and Z. Xing, “Sethesaurus: Wordnet
in software engineering,” IEEE Transactions on Software Engineer-
ing, 2019.

[7] H. Li, S. Li, J. Sun, Z. Xing, X. Peng, M. Liu, and X. Zhao, “Im-
proving api caveats accessibility by mining api caveats knowledge
graph,” in Software Maintenance and Evolution (ICSME), 2018 IEEE
International Conference on. IEEE, 2018.

[8] Z. X. D. L. X. W. Qiao Huang, Xin Xia, “Api method recom-
mendation without worrying about the task-api knowledge gap,”
in Automated Software Engineering (ASE), 2018 33th IEEE/ACM
International Conference on. IEEE, 2018.

[9] B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot: automated gen-
eration of answer summary to developersź technical questions,”
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, 2017, pp. 706–716.

[10] D. Ye, Z. Xing, C. Y. Foo, Z. Q. Ang, J. Li, and N. Kapre, “Software-
specific named entity recognition in software engineering social
content,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1. IEEE, 2016,
pp. 90–101.

[11] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the conll-
2003 shared task: Language-independent named entity recogni-
tion,” in Proceedings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4. Association for Compu-
tational Linguistics, 2003, pp. 142–147.

[12] R. Caruana, “Learning many related tasks at the same time with
backpropagation,” in Advances in neural information processing sys-
tems, 1995, pp. 657–664.

[13] A. Arnold, R. Nallapati, and W. W. Cohen, “Exploiting feature
hierarchy for transfer learning in named entity recognition,” Pro-
ceedings of ACL-08: HLT, pp. 245–253, 2008.

[14] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” in Advances in neural
information processing systems, 2014, pp. 3320–3328.

[15] Z. X. Deheng Ye, Lingfeng Bao and S.-W. Lin, “Apireal: An api
recognition and linking approach for online developer forums,”
Empirical Software Engineering 2018, 2018.

[16] C. dos Santos and M. Gatti, “Deep convolutional neural networks
for sentiment analysis of short texts,” in Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics:
Technical Papers, 2014, pp. 69–78.

[17] C. D. Santos and B. Zadrozny, “Learning character-level repre-
sentations for part-of-speech tagging,” in Proceedings of the 31st
International Conference on Machine Learning (ICML-14), 2014, pp.
1818–1826.

[18] G. Chen, C. Chen, Z. Xing, and B. Xu, “Learning a dual-language
vector space for domain-specific cross-lingual question retrieval,”
in 2016 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 2016, pp. 744–755.

[19] C. Chen, X. Chen, J. Sun, Z. Xing, and G. Li, “Data-driven proac-
tive policy assurance of post quality in community q&a sites,”
Proceedings of the ACM on human-computer interaction, vol. 2, no.
CSCW, p. 33, 2018.

[20] I. Bazzi, “Modelling out-of-vocabulary words for robust speech
recognition,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 2002.

[21] C. Chen, S. Gao, and Z. Xing, “Mining analogical libraries in q&a
discussions–incorporating relational and categorical knowledge
into word embedding,” in 2016 IEEE 23rd international conference
on software analysis, evolution, and reengineering (SANER), vol. 1.
IEEE, 2016, pp. 338–348.

[22] C. Chen and Z. Xing, “Similartech: automatically recommend
analogical libraries across different programming languages,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2016, pp. 834–839.

[23] C. Chen, Z. Xing, and Y. Liu, “Whats spains paris? mining analogi-
cal libraries from q&a discussions,” Empirical Software Engineering,
vol. 24, no. 3, pp. 1155–1194, 2019.

[24] Y. Huang, C. Chen, Z. Xing, T. Lin, and Y. Liu, “Tell them apart:
distilling technology differences from crowd-scale comparison
discussions.” in ASE, 2018, pp. 214–224.

[25] O. Levy and Y. Goldberg, “Neural word embedding as implicit
matrix factorization,” in Advances in neural information processing
systems, 2014, pp. 2177–2185.

[26] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning
sentiment-specific word embedding for twitter sentiment classifi-
cation,” in Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2014,
pp. 1555–1565.

[27] O. Levy, Y. Goldberg, and I. Dagan, “Improving distributional sim-
ilarity with lessons learned from word embeddings,” Transactions
of the Association for Computational Linguistics, vol. 3, pp. 211–225,
2015.

[28] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[29] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in neural information
processing systems, 2014, pp. 3104–3112.

[30] C. Chen, Z. Xing, and Y. Liu, “By the community & for the com-
munity: a deep learning approach to assist collaborative editing in
q&a sites,” Proceedings of the ACM on Human-Computer Interaction,
vol. 1, no. CSCW, p. 32, 2017.

[31] S. Gao, C. Chen, Z. Xing, Y. Ma, W. Song, and S.-W. Lin, “A neural
model for method name generation from functional description,”

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

in 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2019, pp. 414–421.

[32] X. Wang, C. Chen, and Z. Xing, “Domain-specific machine trans-
lation with recurrent neural network for software localization,”
Empirical Software Engineering, pp. 1–32, 2019.

[33] C. Chen, Z. Xing, Y. Liu, and K. L. X. Ong, “Mining likely
analogical apis across third-party libraries via large-scale unsu-
pervised api semantics embedding,” IEEE Transactions on Software
Engineering, 2019.

[34] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11,
pp. 2673–2681, 1997.

[35] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for
sequence tagging,” arXiv preprint arXiv:1508.01991, 2015.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[37] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling,” in Fifteenth annual conference of the international speech
communication association, 2014.

[38] Y. Bengio, “Deep learning of representations for unsupervised and
transfer learning,” in Proceedings of ICML Workshop on Unsupervised
and Transfer Learning, 2012, pp. 17–36.

[39] S. J. Pan, Q. Yang et al., “A survey on transfer learning.”
[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” The Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[42] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and
source code artifacts,” in Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering-Volume 1. ACM, 2010,
pp. 375–384.

[43] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Bench-
marking lightweight techniques to link e-mails and source code,”
in Reverse Engineering, 2009. WCRE’09. 16th Working Conference on.
IEEE, 2009, pp. 205–214.

[44] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10, pp.
1345–1359, 2010.

[45] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transfer-
ring mid-level image representations using convolutional neural
networks,” in Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on. IEEE, 2014, pp. 1717–1724.

[46] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” 2016.

[47] A. Marcus, J. Maletic et al., “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in Soft-
ware Engineering, 2003. Proceedings. 25th International Conference on.
IEEE, 2003, pp. 125–135.

[48] H.-Y. Jiang, T. N. Nguyen, X. Chen, H. Jaygarl, and C. K. Chang,
“Incremental latent semantic indexing for automatic traceabil-
ity link evolution management,” in Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE Computer Society, 2008, pp. 59–68.

[49] W. Zheng, Q. Zhang, and M. Lyu, “Cross-library api recommen-
dation using web search engines,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. ACM, 2011, pp. 480–483.

[50] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei, “Fixing
recurring crash bugs via analyzing q&a sites (t),” in Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Con-
ference on. IEEE, 2015, pp. 307–318.

[51] C. Treude and M. P. Robillard, “Augmenting api documentation
with insights from stack overflow,” in Software Engineering (ICSE),
2016 IEEE/ACM 38th International Conference on. IEEE, 2016, pp.
392–403.

[52] P. C. Rigby and M. P. Robillard, “Discovering essential code
elements in informal documentation,” in Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 2013,
pp. 832–841.

[53] L. Moonen, “Generating robust parsers using island grammars,”
in Reverse Engineering, 2001. Proceedings. Eighth Working Conference
on. IEEE, 2001, pp. 13–22.

[54] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci, “Extracting struc-
tured data from natural language documents with island parsing,”

in Automated Software Engineering (ASE), 2011 26th IEEE/ACM
International Conference on. IEEE, 2011, pp. 476–479.

[55] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware
neural language models.” in AAAI, 2016, pp. 2741–2749.

[56] D. Lukovnikov, A. Fischer, J. Lehmann, and S. Auer, “Neural
network-based question answering over knowledge graphs on
word and character level,” in Proceedings of the 26th international
conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 1211–1220.

[57] W. Ling, I. Trancoso, C. Dyer, and A. W. Black, “Character-based
neural machine translation,” arXiv preprint arXiv:1511.04586, 2015.

[58] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in neural information
processing systems, 2015, pp. 649–657.

[59] C. D. Santos and B. Zadrozny, “Learning character-level repre-
sentations for part-of-speech tagging,” in Proceedings of the 31st
International Conference on Machine Learning (ICML-14), 2014, pp.
1818–1826.

[60] J. P. Chiu and E. Nichols, “Named entity recognition with bidirec-
tional lstm-cnns,” arXiv preprint arXiv:1511.08308, 2015.

[61] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and
C. Dyer, “Neural architectures for named entity recognition,”
arXiv preprint arXiv:1603.01360, 2016.

Suyu Ma is a research assistant in the Faculty
of Information Technology, at Monash University.
He has research interest in the areas of soft-
ware engineering, Deep learning and Human-
computer Interaction. He is currently focusing on
improving the usability and accessibility of mo-
bile application. He received the B.S., and M.S.,
degrees from Beijing Technology and Business
University and the Australian National University
in 2016 and 2018, respectively. And he will be
a PhD student at Monash University in 2020,

under the supervision of Chunyang Chen.

Zhenchang Xing is a Senior Lecturer in the Re-
search School of Computer Science, Australian
National University. Previously, he was an Assis-
tant Professor in the School of Computer Sci-
ence and Engineering, Nanyang Technological
University, Singapore, from 2012-2016. Before
joining NTU, Dr. Xing was a Lee Kuan Yew Re-
search Fellow in the School of Computing, Na-
tional University of Singapore from 2009-2012.
Dr. Xings current research area is in the interdis-
plinary areas of software engineering, human-

computer interaction and applied data analytics. Dr. Xing has over 100
publications in peer-refereed journals and conference proceedings, and
have received several distinguished paper awards from top software
engineering conferences. Dr. Xing regularly serves on the organization
and program committees of the top software engineering conferences,
and he will be the program committee co-chair for ICSME2020.

Chunyang Chen is a lecturer (Assistant Pro-
fessor) in Faculty of Information Technology,
Monash University, Australia. His research fo-
cuses on software engineering, deep learning
and human-computer interaction. He has pub-
lished over 16 papers in referred journals or
conferences, including Empirical Software Engi-
neering, ICSE, ASE, CSCW, ICSME, SANER.
He is a member of IEEE and ACM. He received
ACM SIGSOFT distinguished paper award in
ASE 2018, best paper award in SANER 2016,

and best tool demo in ASE 2016. https://chunyang-chen.github.io/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Cheng Chen received his Bachelor degree in
Software Engineering from Northwest University
(China), and received Master degree of Com-
puting (major in Artificial Intelligence) from the
Australian National University. He did some in-
ternship projects about Natural Language Pro-
cessing at CSIRO from 2016 to 2017. He worked
as a research assistant supervised by Dr. Zhen-
chang Xing at ANU in 2018. Cheng currently
works in PricewaterhouseCoopers (PwC) Firm
as a senior algorithm engineer of Natural Lan-

guage Processing and Data Analyzing. Cheng is interested in Named
Enti ty Extraction, Relation Extraction, Text summarization and parallel
computing. He is working on knowledge engineering and transaction for
NLP tasks.

Lizhen Qu is a research fellow in the Dialogue
Research lab, in the Faculty of Information Tech-
nology, at Monash University. He has exten-
sive research experience in the areas of natural
language processing, multimodal learning, deep
learning, and Cybersecurity. He is currently fo-
cusing on information extraction, semantic pars-
ing, and multimodal dialogue systems. Prior to
joining Monash University, he worked as a re-
search scientist at Data61/CSIRO, where he led
and participated in several research and indus-

trial projects, including Deep Learning for Text and Deep Learning for
Cyber.

Guoqiang Li is now an associate professor in
school of software, Shanghai Jiao Tong Univer-
sity, and a guest associate professor in Kyushu
University. He received the B.S., M.S., and Ph.D.
degrees from Taiyuan University of Technology,
Shanghai Jiao Tong University, and Japan Ad-
vanced Institute of Science and Technology in
2001, 2005, and 2008, respectively. He worked
as a postdoctoral research fellow in the graduate
school of information science, Nagoya Univer-
sity, Japan, during 2008-2009, as an assistant

professor in the school of software, Shanghai Jiao Tong University,
during 2009-2013, and as an academic visitor in the department of
computer science, University of Oxford during 2015-2016. His research
interests include formal verification, programming language theory, and
data analytics and intelligence. He published more than 40 researches
papers in the international journals and mainstream conferences, includ-
ing TDSC, SPE, TECS, IJFCS, SCIS, CSCW, ICSE, FORMATS, ATVA,
etc.

