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Abstract—Informal discussions on social platforms (e.g., Stack Overflow, CodeProject) have accumulated a large body of
programming knowledge in the form of natural language text. Natural language process (NLP) techniques can be utilized to harvest
this knowledge base for software engineering tasks. However, consistent vocabulary for a concept is essential to make an effective use
of these NLP techniques. Unfortunately, the same concepts are often intentionally or accidentally mentioned in many different
morphological forms (such as abbreviations, synonyms and misspellings) in informal discussions. Existing techniques to deal with such
morphological forms are either designed for general English or mainly resort to domain-specific lexical rules. A thesaurus, which
contains software-specific terms and commonly-used morphological forms, is desirable to perform normalization for software
engineering text. However, constructing this thesaurus in a manual way is a challenge task. In this paper, we propose an automatic
unsupervised approach to build such a thesaurus. In particular, we first identify software-specific terms by utilizing a software-specific
corpus (e.g., Stack Overflow) and a general corpus (e.g., Wikipedia). Then we infer morphological forms of software-specific terms by
combining distributed word semantics, domain-specific lexical rules and transformations. Finally, we perform graph analysis on
morphological relations. We evaluate the coverage and accuracy of our constructed thesaurus against community-cumulated lists of
software-specific terms, abbreviations and synonyms. We also manually examine the correctness of the identified abbreviations and
synonyms in our thesaurus. We demonstrate the usefulness of our constructed thesaurus by developing three applications and also
verify the generality of our approach in constructing thesauruses from data sources in other domains.

Index Terms—Software-specific Thesaurus, Natural Language Processing, Morphological Form, Word Embedding.
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1 INTRODUCTION

D EVELOPERS often discuss in the form of natural lan-
guage text on social platforms (such as Stack Overflow,

CodeProject) to share and acquire programming knowledge.
Therefore, many natural-language-processing (NLP) based
techniques have been proposed and developed to mine
programming knowledge from such informal discussions.
The mined knowledge can assist developers for many soft-
ware engineering tasks, such as searching for documents [1]
[2], categorizing software technologies [3], extracting API
mentions and usage insights [4] [5], recovering traceability
among informal discussions (e.g., duplicate questions [6]) or
between code and informal discussions [7], linking domain-
specific entities in informal discussions to official docu-
ments [8] and mining technology landscapes [9], [10]. To
make an effective use of NLP techniques in these tasks, a
consistently-used vocabulary of software-specific terms is
essential, since NLP techniques assume that the same words
are used whenever a particular concept is mentioned.

Since informal discussions are created by millions of
developers, who have diverse technical and linguistic back-
ground, the same concept is often mentioned in many
morphological forms (such as abbreviations, synonyms and
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TABLE 1: Morphological forms of convolutional neural net-
work

Term Frequency Annotation
convolutional neural network 992 Standard

cnn 5,901 Abbreviation
cnns 502 Abbreviation

convolutional-neural-networks 469 Synonym
convnet 376 Abbreviation

convolution-neural-network 185 Synonym
convnets 99 Abbreviation

convolution neural networks 33 synonym

misspellings) intentionally or accidentally [4]. Fig. 1 shows
three posts from Stack Overflow, which discuss the slash
issue of regular expression when parsing JavaScript. These
three posts are marked as duplicate posts by the Stack Over-
flow community, since they discuss the same programming
issue (i.e., the three posts are considered as semantically
equivalent). However, when mentioning regular expression
and JavaScript, these three different users use many mor-
phological forms (e.g., regex, RegExp, regexes), and even the
same user uses various forms in the same post (e.g., JS,
JavaScript). As another example, Table 1 summarizes the
frequencies of various morphological forms of convolutional
neural network in Stack Overflow discussions. Note that there
exist many morphological forms for the same concept, and
some forms are even used as frequently as the standard one
(e.g., convolutional neural network and cnn in Table 1).

The wide presence of morphological forms for the same
concept in informal discussions results in a serious challenge
for informal-retrieval based software engineering tasks.
For example, for the query “slash in regular expressions
Javascript”, some posts in Fig. 1 may not be retrieved due to
the morphological forms of JavaScript and regular expression
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(a) post ID=14553203 (b) post ID=5519596
http://stackoverflow.com/questions/14553203/javascript‐lexer‐dealing‐with
http://stackoverflow.com/questions/5519596/when‐parsing‐javascript‐what‐determines‐the‐meaning‐of‐a‐slash
http://stackoverflow.com/questions/4726295/division‐regexp‐conflict‐while‐tokenizing‐javascript

(c) post ID=4726295

Fig. 1: The morphological forms of terms “regular expression” (blue) and “javascript” (red) in three posts from Stack
Overflow

used in these posts, even though these three posts are
semantically equivalent. Moreover, overlooking the close
relationships between various morphological forms of the
same concept may also accentuate data sparsity problems in
applying NLP techniques to mining programming knowl-
edge in informal discussions, which could have negative
effects on the performance of the NLP techniques.

Word embedding and neural network [11], [12], [13]
have been used in current NLP research domain to deal
with the issue of morphology. A recent work by Soricut
and Och [14] exploits the exhibited relational regularities
via word embedding (e.g., car to cars, dog to dogs) to
model prefix-based and suffix-based morphological rules
and transformations. However, these morphology learning
techniques in the NLP domain only consider morphological
relations, which are drawn out of linguistic regularities of
natural language (e.g., prefix and suffix). As shown in Fig. 1
and Table 1, morphological forms of software-specific terms
found in informal discussions do not always follow linguis-
tic regularities of natural language (e.g., JS and Javascript,
RegExp and regular expressions).

The impact of inconsistent vocabulary has been recog-
nized for the application of NLP-based techniques to source
code and software documentation [15], [16], [17], [18], [19]
in the software engineering research domain. The focus has
been put on expanding identifiers that contain abbreviations
and acronyms. The proposed solutions are predominantly
lexically-based approaches, for example, based on common
naming conventions in software engineering like camel case,
or use string edit distance to measure the similarity between
an abbreviation and its potential expansions. But lexical
rules are often unreliable. For example, both open cv and
opencsv are lexically similar to opencv. However, opencsv is a
library for parsing csv files and it is completely irrelevant
to opencv, which is a computer vision library. To solve
this issue, most of previous approaches resort to external
resources (e.g., English dictionary, dictionary of IT term and
known abbreviations), which are often difficult to build and
maintain, especially domain-specific ones. Some of previous
approaches [20], [21], [22] exploit word frequency in word
co-occurrence data to rank abbreviation expansions, but
none of them exploit semantic relevance of words.

In this paper, we propose an automatic approach for
inferring morphological forms of software-specific terms
in a large corpus of informal software engineering text.
Our approach first compares software engineering text (e.g.,
discussions from Stack Overflow) against general text (e.g.,
Wikipedia documents) to derive a vocabulary of software-
specific terms, which are used in software engineering text.
It then combines the state-of-the-art word embedding meth-

ods in the NLP domain and the domain-specific lexical rules
developed in the software engineering domain. As such, we
can infer morphological forms of software-specific terms,
which not only obey lexical rules but also are semantically
close to each other. Based on the graph of the morphological
relations between pairs of terms, our approach finds groups
of morphological forms, each expressing a distinct concept
(examples can be found in Fig. 5), similar to the notion of
synsets1 provided by WordNet [23].

After compared with several community-cumulated lists
of IT terms, abbreviations and synonyms, our approach
can automatically infer software-specific terms and mor-
phological forms, which are up-to-date and actively used
in Stack Overflow. In contrast, community-cumulated lists
contain many out-of-date terms and rarely-used morpho-
logical forms. This result demonstrates the necessity of
our proposed approach and shows the advantage of our
approach (i.e., it can automatically infer software-specific
morphological forms). Examination in the manual way on
randomly sampled 384 abbreviations and synonyms shows
the high coverage (72.9% and 86.5%) of our approach. To
demonstrate the usefulness of the inferred morphological
forms of software-specific terms for information retrieval,
we develop three applications including software-specific
text normalization, identifying tag synonyms on Stack Over-
flow and software-specific spelling correction. In addition,
the success of constructing thesaurus in other domain-
specific datasets also shows the generality of our approach.

This paper is an extended version of our earlier s-
tudy [24]. The extension makes the following additional
contributions:

• We update the software-specific thesaurus based on
the latest Stack Overflow data dump.

• Apart from the continuous skip-gram model [25],
we also adopt FastText model [26] which takes sub-
word information into the consideration to learn the
fine-grained semantic relevance between software-
specific terms.

• Based on the extracted thesaurus, we further imple-
ment a software-specific dictionary in a website2 and
a browser plugin3 to help developers conveniently
understand software-specific terms.

• We not only update previous experiments by includ-
ing new data and new baselines, but also add more
detailed analysis of experiments results.

1. Synsets are interlinked by means of conceptual-semantic and lexi-
cal relations

2. https://se-dictionary.appspot.com/
3. https://github.com/ccywch/se-dict-browser-extension
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• To demonstrate the usefulness of the extracted the-
sauruses, we develop three thesaurus based appli-
cations, including software-specific text normaliza-
tion, tag synonym detection in Stack Overflow and
software-specific spell checker.

• To demonstrate the generality of our approach, we
extend our approach to other kinds of Q&A sites
including Mathematics Stack Exchange4 and English
Language & Usage Stack Exchange5. The experiment
results demonstrate that our approach can also suc-
cessfully construct domain-specific thesauruses from
other data sources.

• To support the replication of this work, we also
develop a python package6 which implements our
proposed approach. Developers or other researchers
can adopt or customize it for their own purpose.

2 THE APPROACH

The overview of our approach can be found in Fig. 2.
The inputs of our approach are only a software-specific
corpus (e.g., Stack Overflow text) and a general corpus (e.g.,
Wikipedia text). The output of our approach is a thesaurus
including software-specific terms and their morphological
forms (called SEthesaurus). Our approach mainly includes
6 main steps: 1) performing text cleaning and phrase de-
tection, 2) identifying software-specific vocabulary by con-
trasting software-specific and general corpus, 3) learning
term semantics by word embedding techniques, such as
FastText model [26] and continuous skip-gram model [27],
4) extracting semantically relevance terms as candidates of
morphological forms, 5) discriminating abbreviations and
synonyms from the list of morphological form candidates,
and 6) grouping morphological forms of software-specific
terms based on a graph of morphological relations.

2.1 The Inputs of Our Approach
The inputs of our approach are a software-specific corpus
of plain text and a general corpus of plain text. No other
external resources are required. In particular, software spe-
cific corpus can be crawled from domain-specific web sites,
such as Stack Overflow, CodeProject, W3School, MSDN. As
we are interested in discovering morphological forms from
informal discussions in software engineering, as well as
considering the popularity of the website and the volume
of the data, we choose Stack Overflow text as the software-
specific corpus in this work. General corpus can be crawled
from domain-agnostic websites, such as Wikipedia, Quora,
Baidu Zhidao, and these websites can cover a diverse set of
domains. Considering the quality and the public availability
of the data, we choose Wikipedia text as the general corpus
in this work. Moreover, Wikipedia text is also adopted as the
general corpus for other NLP work [28]. It is important to
note that our data analysis approach is not limited to Stack
Overflow and Wikipedia data.
Summary for the characteristics of the dataset: In this
work, the Stack Overflow data dump7, which is gathered

4. https://math.stackexchange.com/
5. https://english.stackexchange.com/
6. https://pypi.org/project/DomainThesaurus/
7. https://archive.org/details/stackexchange/

from July 2008 to August 2018, contains 15,930,617 questions
and 24,676,333 answers. We collect the title and body content
of all the questions and answers as the software-specific cor-
pus. The Wikipedia data dump8 includes 8,556,773 articles
before August 2018. We collect the page content of all the
articles as the general corpus.

2.2 Performing Data Preprocessing for Input Corpuses
2.2.1 Text cleaning
Since both datasets are downloaded from websites, we
perform the text cleaning steps, which are commonly used
for preprocessing web contents [29], [30]. We first preserve
textual contents but remove HTML tags. In particular, for
Wikipedia data, we remove all references from page content.
For Stack Overflow data, we remove long code snippets in
<pre> or <code> in the posts, but not short code elements
in <code> in natural language sentences. Then, we use
our developed software-specific tokenizer [31] to tokenize
these sentences. Our proposed tokenizer can preserve the
integrity of code-like tokens and the sentence structure.
For example, it treats numpy.ndarray.argmin() as a single
token, instead of a sequence of 7 tokens (i.e., {numpy, .,
ndarray, ., argmin, (, )}).

2.2.2 Phrase Detection
A significant limitation of previous techniques for detecting
similar words or synonym detection is that they only con-
sider single word (i.e., token) [32]. However, many software-
specific terms are composed of several words (such as inte-
grated development environment , operating system and breadth
first search). These multi-word phrases must be recognized
and treated as a whole during data analysis.

We utilize a simple data-driven and memory-efficient
approach [27] to recognize multi-word phrases in the text.
In this approach, phrases are formed iteratively based on
the unigram and bigram counts by using

score(wi, wi+1) =
(count(wi, wi+1)− δ)×N
count(wi)× count(wi+1)

(1)

wi and wi+1 are two consecutive words, count(wiwi+1)
returns the frequency of the phrase wiwi+1 in the corpus
and N is the total number of words in the corpus. δ is a
discounting coefficient to prevent phrases consisting of two
infrequent words to be formed. That is, the two consecutive
words will not form a bigram phrase if they appear as a
phrase less than δ times in the corpus. In our study, we set
δ to 10 based on the previous study [27]. To determine the
threshold of score, we carry out a small-scale pilot study
(i.e., we ask the third author to manually check the cov-
erage and accuracy of the detected phrases given different
threshold values ranging from 5 to 20). The results show that
setting the threshold of score as 15 can achieve a relatively
good balance between the coverage and accuracy.

Our method can find bigram phrases, which appear
frequently enough in the text when compared with the
frequency of each unigram, such as sql server. But the bigram
phrases like this is will not be formed because each unigram
also appear very frequently separately in the text. Once

8. https://dumps.wikimedia.org/enwiki/latest/
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Fig. 2: The overview of our approach

the bigram phrases are formed, we repeat the process to
detect trigram and fourgram phrases. In this work, we stop
at fourgram phrases, but our approach can be extended to
phrases with more words.

2.3 Building Software-Specific Vocabulary

Inspired by Park et al.’s work [28], we identify software-
specific terms by contrasting the frequency of a term in
the software specific corpus compared with its frequency
in the general corpus. Specially, we measure a term’s domain
specificity by using the equation:

domainspecificity(t) =
pd(t)

pg(t)
=

cd(t)
Nd

cg(t)
Ng

(2)

where d and g represent domain-specific and general cor-
pus respectively, pd(t) and pg(t) are the probability of the
term t in the two corpuses respectively. For example, the
probability pd(t) of a term t in the software-specific corpus
d is calculated by dividing the term frequency (i.e., cd(t))
by the total number of tokens (i.e., Nd) in the corpus. The
underlying intuition is that terms that appear frequently in
the software-specific corpus but infrequently in the general
corpus are software-specific terms. The detailed threshold
of domainspecificity is discussed in Section 4.6.

However, we find that some terms, which are commonly
used by developers on Stack Overflow, bear little domain-
specific meaning. For example, i is frequently used as a
variable in loop. Developers also frequently mention some
numeric metrics, such as 1 sec and 10mb. Since these terms
do not represent any domain-specific concepts in informal
discussions, we use stop-term rules to exclude such mean-
ingless terms. For example, we exclude terms beginning
with number or special punctuations like *, + and >. We
also exclude terms with only one letter (note that c and r are
preserved as they are programming languages).

2.4 Learning Term Semantics

To learn the semantic of the term, we combine two ap-
proaches (i.e., the continuous skip-gram model [25], [27] and
FastText model [26]). These models include state-of-the-art
algorithms for learning distributed word vector represen-
tations (i.e., word embeddings) by using a neural network
model, and they are widely used for software engineering

domain [33], [34], [35]. The underling intuition of these al-
gorithms is that words with similar meaning would appear
in the similar context. Therefore, the representation of each
word can be defined on the words it frequently co-occurs
with.

The continuous skip-gram model regards each word as
the basic unit, while the FastText model take the sub-word
information into the consideration. Therefore, we comple-
ment the previous skip-gram model with FastText model so
that our model can learn the term semantic from different
granularities.

2.4.1 Continuous Skip-gram Model
As illustrated in Fig. 3, the objective of the continuous
skip-gram model (skip-gram model) is to learn the word
representation of each word, which is good at predicting
the surrounding words in the sentence. Formally, given a
training sentence of K words w1, w2, ..., wK , the objective
of the continuous skip-gram model is to maximize the
following average log probability:

L =
1

K

K∑
k=1

∑
−N�j�N,j 6=0

log p(wk+j |wk) (3)

where wk is the central word in a sliding window of the
size 2N + 1 over the sentence, wk+j is the context word
surrounding wk within the sliding window. Our approach
trains the continuous skip-gram model using the software-
specific corpus obtained in Section 2.2. We set the sliding
window sizeN to 5 in our study. That is, the sliding window
contains 5 surrounding terms as the context terms for a
given term in the sentence. Notice the sliding window size
is also an important parameter for the FastText Model and
we also set the value of this parameter to 5. The sensitivity
analysis for the value of this parameter can be found in
Section 4.6.

The probability p(wk+j |wk) in Equation 3 can be formu-
lated as a log-linear softmax function:

p(wk+j |wk) =
es(wk,wk+j)∑W
i=1 e

s(wk,i)
(4)

where W is the number of words in the vocabulary, and
s is a scoring function to map pairs of words to scores
for computation. In the continuous skip-gram model, the
scoring function is the dot product of vectors of two words:
s(wk, wk+j) = vwk

T vwk+j
.
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word embedding of 𝑤3 

𝑤1 𝑤5 𝑤4 𝑤2 

𝑤3 

Fig. 3: The continuous skip-gram model, which can predict
the surrounding words given the center word.

The Equation 4 can be efficiently solved by the negative
sampling method [27]. After the iterative feed-forward and
back propagation, the training process finally converges,
and each term obtains a low-dimensional real-valued vector
(i.e., word embedding) in the resulting vector space.

2.4.2 FastText Model

Although skip-gram model can encode the semantic of
software-specific terms into a dense vector, it only considers
the word context rather than the word itself. For example,
the term javascript and javascrip are a synonym pair, but as
the misspelling javascrip appears rarely in the whole dataset,
the vector learned from its context cannot fully represent its
semantic. Therefore, it is possible that the vector of javascript
and javascrip are not very close, but they have semantic
similarity indeed. To overcome this problem, we take the
sub-word information into consideration by adopting the
FastText model [26].

Different from the skip-gram model, each word w is
represented as a bag of character n-gram. For example,
when we are considering character 3-gram (i.e., n is 3), the
word python will be represented as a collection of n-gram:

< py, pyt, yth, tho, hon, on >

and also the special sequence < python >, where boundary
symbols < and > annotate the beginning and the end of
the word. Overall the FastText model follows the same
target as that of the skip-gram model (i.e., Equation 3). But
different from the skip-gram model, which considers the
whole word as the unit, the scoring function in Equation 4
for the FastText model as the sum (i.e., dot product) of vector
representations of its n-gram:

s(wk, wk+j) =
∑

g∈Gwk

zg
T vwk+j

(5)

where Gwk
⊂ {1, ..., G} is the set of n-grams appearing

in the given word wk, and zg is the vector representation
associated with each n-gram g.

Apart from rendering high-quality vectors for rare word-
s or terms, the FastText model can also give the represen-
tation for OOV (out-of-vocabulary) words since the OOV
words can be also broken down into character n-grams. In
contrast, the continuous skip-gram model cannot deal with
the OOV words.

Note that when encoding the semantic of phrases, es-
pecially long phrases with several words such as model-
view-controller and drop-down-menu, the FastText model
behaves much worse than the skip-gram model. The reason
for that problem is that the long phrases are decomposed
into many sub-words, leading to the difficulty of encoding
its semantic in the FastText model. That is why we com-
bine both the skip-gram model and the FastText model for
inferring semantic-related terms.

2.5 Extracting Semantically Related Terms

For each software-specific term t in the software-specific vo-
cabulary, if the term t is in the vector space Vi (1 ≤ i ≤M ),
we can find a list of semantically related terms whose term
vectors v(w) are most similar to the vector v(t) in the vector
space using the following equation:

argmax
w∈AVi

cos(v(w), v(t)) = argmax
w∈AVi

v(w) · v(t)
‖v(w)‖‖v(t)‖

(6)

where A is the set of all terms in the vector space Vi, which
excludes the term t, and cos(v(w), v(t)) returns the cosine
similarity of the two vectors.

Given the skip-gram model (introduced in Section 2.4.1)
and the FastText model (introduced in Section 2.4.2), for a
term t ∈ Vi, we select the top-k (k=40) most similar terms in
the vector space Vi based on the skip-gram model and the
FastText model respectively. We use TermsS and TermsF
to denote these two different term sets from the skip-gram
model and the FastText model. Then we combine both sets
(TermsS ∪ TermsF ) as the set of candidate semantically
related terms. The sensitivity analysis for the value of the
parameter k can be found in Section 4.6 To render a deeper
understanding of word embedding methods, we visualize
some terms in the vector space by adopting the PCA (Princi-
pal Component Analysis) method. Fig. 4 (a) shows the list of
semantically related terms for the three terms (scikit learning,
tensorflow and internet explorer) by using FastText model.
Fig. 4 (b) shows the list of semantically related terms for
the three terms (artificial neural network, document object model
and internet explorer) by using continuous skip-gram model.
Within the list of semantically related terms, there are three
kinds of candidates: synonyms (i.e., morphological forms of
a term in this work), abbreviations and other related words.
Then we will introduce how to discriminate synonyms and
abbreviations from the semantically related candidates for
each term.

2.6 Discriminating Synonyms & Abbreviations

We now explain the lexical rules and the string edit distance,
which are used to discriminate synonyms and abbreviations
of a term from its semantically related terms.

2.6.1 Discriminating Synonyms
Synonyms are defined as pairs of morphological similar
terms in this work. Some morphological-synonyms can
be determined by using stemming, such as (link, links)
and (machine learn, machine learning). However, many oth-
er synonyms can not be determined by this way, such
as (windows-service, windowsservices), (tf idf, tfidf ), (integer,
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(a) FastText (b) continuous skip-gram

Fig. 4: An illustration of term representations in the word embedding space, two-dimensional projection by using PCA.

integet (a misspelling)), (angular, angularjs). We observe that
morphological-synonyms among semantically related terms
can be usually transformed from one term to another by
performing a small number of string edits. Therefore, giv-
en a term t and a semantically related term w, we use
string edit distance to determine whether the two terms are
morphological-synonyms.

Levenshtein distance [36] is often used to compute the
string edit distance. The string edit distance is the minimum
number of single-character edits (such as insertions, dele-
tions or substitutions) required to transform one word into
another. In this work, we use Damerau-Levenshtein (DL)
distance [37], which is an enhanced string edit distance,
to compute the minimum number of single-character edits
(such as insertions, deletions, substitutions, and transpo-
sitions) required to transform one term to another. DL
distance enhances the Levenshtein distance [36] with the
transposition of the two adjacent characters (such as false
and flase). Such character transpositions are a common
cause of misspellings. Therefore, DL distance can be used
to detect such misspellings more reliably than Levenshtein
distance.

The original DL distance can not be directly adopted
for measurement. For example, the DL distance between a
pair (subdomain, sub-domains) and the DL distance between
a pair (svg, png) are both 2. However, the pair (subdomain,
sub-domains) is morphological synonym, while the pair (svg,
png) is not. Therefore, we take into consideration both the
original absolute DL distance and the relative similarity
between two terms. In this paper, the original DL distance of
the two synonyms must not exceed 4. For example, the pair
(dispatcher.begininvoke, dispatcher.invoke) will not be regarded
as synonyms since the original DL distance between the two
terms is 5.

For the relative similarity, we normalize the original DL
distance according to the maximum length of the two terms
by:

similaritymorph(t, w) = 1− DLdistance(t, w)

max(len(t), len(w))
(7)

where the function DLdistance returns the original DL
distance between two terms and the function len returns
the length of the term. The relative similarity indicates that
the different parts of the two synonyms should be relatively
small when compared with the same parts of the two terms.
In this work, we set the threshold for relative similarity
as 1/3 after carrying our a small-scale pilot study. As a
result, the pair (subdomain, sub-domains) will be recognized
as synonyms, but the pair (svg, png) will not. The reason is
that the first pair is relatively similar enough, but the second
pair is not.

2.6.2 Discriminating Abbreviations
Given a term t, if a semantically related term w does not
satisfy the requirement of being a synonym, we further
check whether it is an abbreviation of the given term. We
consider the semantically related term w as an abbreviation
of the term t if they satisfy the following heuristics-based
lexical rules. Similar lexical rules are used to identify abbre-
viations [15], [18].

• The characters of the term w must be in the same
order as they appear in the term t, such as (pypi,
python pacage index), (amq, activemq);

• The length of the term w must be shorter than that of
the term t;

• If there are digits in the term w, there must be the
same digits in the term t. For example, vs2010 is
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TABLE 2: Representative terms and their abbreviations and
synonyms.

Term Abbreviations Synonyms
access-control-list acl access-control-lists
windows-phone wp winphone
authentication authn autenticator, authentifications

database db databse, datbase
markdown md markdow, mardown

k-nearest-neighbour knn k-nearest-neighbor
button-click btnclick, bt-click buttonclicked, btnonclick

regarded as an abbreviation of visual studio 2010, but
vs is not regarded as an abbreviation of visual studio
2010;

• The term w should not be the abbreviation of only
some words in a multi-word phrase. For example,
cmd is regarded as the abbreviation of command, but
not as the abbreviation of command line.

It is important to note that morphological synonyms and
abbreviations are discriminated from highly semantically
related terms established by the terms’ word embedding.
The above edit distance and lexical rules alone can not be
used to detect morphological synonyms and abbreviations
reliably without considering semantic relatedness between
terms. For example, according to the above lexical rules,
ie can be regarded as an abbreviation of view. However,
once considering semantic similarity, the term ie is not
semantically related to the term view. Thus, ie will not even
be an abbreviation candidate for view. Similarly, by solely
using the DL distance, the terms (opencv, opencsv) will be
regarded as synonyms. However, in our approach the two
terms are not semantically related, and thus neither of them
will be considered as a synonym candidate for each other.

2.7 Grouping Morphological Synonyms
We identify synonyms for each term in our software-specific
vocabulary. It is likely that we obtain separate but over-
lapping sets of synonyms for different terms. For example,
for the term files-system, we obtain {filessystem, filesysytem,
file-system}, while for the term file-systems, we obtain {file-
system, filesystems, file systems}. Note that the term file-system
appears in two synonym sets simultaneously. We group
such overlapping sets of morphological synonyms for d-
ifferent terms into one set of morphological synonyms, in
which each pair of terms can be regarded as morphological
synonyms.

To group separate but overlapping sets of morphological
synonyms, we first build a graph of morphological syn-
onyms based on the synonym relation between terms. Then,
we find connected components in the graph as groups of
morphological synonyms. Each pair of terms in a group is
considered as synonyms. Some examples9 can be found in
Fig. 5. For instance, the relationship between files-system and
file-systems acts as a bridge between two synonym groups so
that we can merge them as one.

Considering all terms in a connected component as
mutual synonyms, we essentially consider each group of
morphological synonyms as a distinct concept. We select the
term in the group with the highest usage frequency in Stack

9. For multi-word phrases (e.g., multi modular), we replace space with
” ” for the convenience of visualization.

Fig. 5: The synonym graph (here the edge represents the
synonym relationship and a connected component repre-
sents a group of synonyms)

TABLE 3: Exmaples of semantically related techniques

Term Semantically related terms
java scala, groovy, c++, clojure, c#, delphi, python

netbeans eclipse, intellij, pydev, android stuio, aptana
beautifulsoup lxml, nokogiri, html agility pack, jsoup, simplexml

codeigniter cakephp, yii, zend, symfony, django, joomla, laravel
binary search linear search, bubble sort, radix sort, quicksort

Overflow as the representative term for this concept. For
each group of morphological synonyms (i.e., each concept),
we merge the list of abbreviations of the terms in the group
into a list of abbreviations for the group. Table 2 presents
some examples of the representative terms and their abbre-
viations and synonyms identified by our approach.

3 IMPLEMENTATION

Based on the approach mentioned in Section 2, we build
a SEthesaurus with 466,228 software-specific terms, 18,951
abbreviations and 442,684 synonyms. Then we further en-
rich it with more information so that it can be regarded as a
dictionary for software engineering domain. We consider all
software-specific terms mined in our approach as entries in
our dictionary. For each entry, there are four different kinds
of information:

• Its abbreviations and synonyms;
• The definition from Wikipedia or TagWiki in Stack

Overflow;
• Its semantic related terms, which are not included in

the abbreviations and synonyms;
• Its frequent links in Stack Overflow, which are not

included in Wikipedia or TagWiki in Stack Overflow.

The abbreviations and synonyms of each term come
from our constructed SEthesaurus. We find its Wikipedia
or Stack Overflow links according to the anchor text of the
link. The semantic related terms are mined by the approach
in Section 2.5. After extracting the synonyms and abbrevia-
tions, the rest is a list of terms, which are highly correlated
with the given term. Table 3 shows some examples, and
these terms can be exploited in recommendation systems
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abbreviation synonyms

definition from Wikipedia 
frequent link in Stack Overflow

Relevant software‐specific terms

Fig. 6: The screenshot of our website

Fig. 7: The screenshot of the Firefox plug-in in use

for software engineering tasks. For example, we can use
this knowledge to recommend similar techniques or ana-
logical techniques across programming languages [38]. We
may also exploit these semantically related terms for query
expansion and reformulation [39], [40]. The frequent links
are extracted in the same way as we obtain definition links
from the Wikipedia or Stack Overflow.

We build a prototype demo website10 for the community
to have an access to our thesaurus and a screenshot of our
website can be found in Fig. 6. In the website, users can
search for software-specific terms and find their abbrevia-
tions and synonyms. As our thesaurus can also be applied
to other related tasks, we also release the API (similar
to WordNet API) for developers to have an access to the
information in the dictionary. As an example, we develop
a Firefox plug-in11 based on our thesaurus, and this plug-
in can assist users to understand software-related articles
by showing the explanation for their interested software-
specific terms. The screenshot of this plug-in can be found
in Fig. 7.

4 EVALUATION OF OUR THESAURUS

In this section, we evaluate the coverage of software-specific
terms and the coverage of abbreviations and synonyms
in our constructed thesaurus SEthesaurus against several
community-created lists of computing-related terms, abbre-
viations and synonyms. We also examine the correctness of
the identified abbreviations and synonyms in the manual
way, and demonstrate the generality of our approach by
constructing thesaurus based other domain-specific data.
We have released all experiment results in this study12.

10. https://se-dictionary.appspot.com/
11. https://github.com/ccywch/se-dict-browser-extension
12. https://sedict.github.io/

TABLE 4: The coverage of software-specific terms in SOtag and
CPtag datasets

Dataset #Term Method #CoveredTerm Coverage

SOtag 28335
SEthesaurus 17292 61.03%
SEWordSim 2074 7.32%

WordNet 4123 14.55%

CPtag 765
SEthesaurus 467 61.05%
SEWordSim 341 44.58%

WordNet 330 43.13%

4.1 Baselines
To demonstrate the effectiveness of our approach, we com-
pare our SEthesaurus with two state-of-the-art baselines.

• WordNet. WordNet [23] is a general-purpose lexi-
cal database of English created by lexicographers.
WordNet groups English words into synonym sets
(synsets), such as {small, little, minor}.

• SEWordSim. SEWordSim [32] is a software-specific
word similarity database, which is extracted from
Stack Overflow.

• SEthesaurus-sg. SEthesaurus-sg [24] builds the
SEthesaurus with solely continuous skip-gram mod-
el.

• SEthesaurus-ft. SEthesaurus-ft builds the SEthe-
saurus with solely FastText model.

4.2 The Coverage of Software-Specific Terms
To confirm whether our thesaurus can provide a good
coverage ability for software-specific terms, we compare
the software-specific terms of our thesaurus against two
community-cumulated software-specific vocabularies from
two popular programming Q&A sites (i.e., Stack Overflow
and CodeProject).

In Stack Overflow, each question is attached with up
to five tags, which are used to describe the programming
techniques and concepts of this question. Therefore, these
tags can be regarded as software-specific terms [41]. We col-
lect 52,445 tags from 15,930,617 questions in Stack Overflow
from July 2008 to June 2018. We only consider 28,335 tags
which appear more than 30 times to avoid rare tags. Based
on our observations, many rare tags are of low quality or not
software-specific terms. For example, the tag threads.h is just
a file in a library that supports multi-threading in c++ 11.
Apart from Stack Overflow, we also collect 2,309 tags from
331,040 questions in CodeProject13 from September 2005 to
August 2018. Similar to Stack Overflow, we consider 765
tags whose frequency is larger than 30 times to avoid rare
terms. Note that we take the same threshold on both Code-
Project and Stack Overflow for the consistent experimental
setting though the data quality of CodeProject is much lower
than that of Stack Overflow [42], [43]. For the convenience
of description, we refer these two community-cumulated
software-specific vocabularies as SOtag and CPtag. The cov-
erage of software-specific terms for our thesaurus and two
baseline methods (i.e. WordNet and SEWordSim 14) in SOtag
and CPtag datasets can be found in Table 4. For each tag in

13. A popular programming Q&A site: http://www.codeproject.
com/script/Answers/List.aspx??tab=active

14. The database from them is based on the Stack Overflow data by
2014.
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the SOtag database or the CPtag database, we will check
whether this tag is in the SEWordSim database provided
by the authors and then calculate the coverage rate. In
particular, our thesaurus contains 466,228 software-specific
terms. It can cover 61.03% terms in the SOtag dataset and
61.05% terms in the CPtag dataset. In contrast, SEWordSim
and WordNet can only cover no more than 50% terms. These
comparison results demonstrate the necessity of building a
software-specific thesaurus.

In Table 4, we notice the coverage of software-specific
abbreviations for SEWordSim is low, especially in the SOtag
dataset. One important reason is that SEWordSim only con-
siders single words rather than multi-word phrases. Accord-
ing to our observation, there are 11,877 (41.92%) multi-word
tags in the SOtag dataset and 63 (8.24%) multi-word tags
in the CPtag dataset. That is one important reason why our
model can significantly outperform the SEWordSim model
on the SOtag dataset when compared to its performance on
the CPtag dataset.

By further analyzing the tags in the SOtag and CP-
tag datasets, which are not covered by our thesaurus, we
summarize three reasons and we use some tags to further
illustrate these reasons. First, some tags in the SOtag and
CPtag datasets contain phases with many words, and many
of them contain version number (such as google-play-services-
3.3.0 and facebook-graph-api-2.3). However, developers often
do not use version numbers when mentioning a technique
in discussions. Therefore, our thesaurus may not contain a
specific version of a technique, but it usually contains the
general term for the technique, such as google play services
and facebook graph api. As shown in the bar chart of Fig. 8,
the coverage for the SOtags with 4 or more words is low
(10.38%). However, for the tags with 3 or less words, the
coverage becomes much higher. Second, as shown in Fig. 8,
tags that are used more times, the coverage by our vocabu-
lary is higher. In SOTags, for tags that are used more than
10000 times, the coverage by our thesaurus can reach 74%.
But for tags that are used less than 100 times, the coverage is
only about 57.09%. Note that, although the number of less-
frequently-used tags (30-1000 times) is 11,507 and account
for 40.61% of the tags in Stack Overflow, their total times of
usage only account for 1.4% of the total tag usage. Therefore,
the impact of missing some less-frequently-used tags for
NLP tasks like information retrieval is trivial. Third, some
tags are artificial terms for tagging the questions, such as
android-studio-import and azure-tablequery, but these terms
are rarely used in informal discussions.

4.3 The Coverage of Abbreviations

To confirm whether our thesaurus can provide a good
coverage ability for abbreviations, we compare abbrevia-
tions of our thesaurus against a list of computing and IT
abbreviations in Wikipedia15. This list contains 1,423 pairs
of full name and corresponding abbreviation.

Our SEthesaurus mainly contains 18,951 abbreviations
for 14,814 terms16 from Stack Overflow corpus. 851 of these

15. https://en.wikipedia.org/wiki/List of computing and IT
abbreviations

16. Note that one term may have several abbreviations in our the-
saurus.

TABLE 5: The coverage of software-specific abbreviations

Method #Covered
FullName

#Covered
Abbreviation Coverage

WordNet 110 4 3.64%
SEWordSim 8 2 25.0%

SEthesaurus-sg 638 418 65.52%
SEthesaurus-ft 595 347 58.32%

SEthesaurus (top-40) 721 511 70.87%
SEthesaurus (top-20) 721 487 67.55%

1,423 full names in Wikipedia can be found in our thesaurus.
For those 572 full names, which can not be found in our
thesaurus, we summarize three reasons according to our
observation. First, some of them are phrases with too many
words (e.g., national institute of standards and technology, java
xml for remote procedure calls). Second, some of them belong
to other domains, such as communication domain (e.g.,
atm adaptation layer, advanced research projects agency). Third,
some of them are just normal phrases, such as Keyboard
and personal computer, which also frequently appear in the
general text.

With these 851 full names and their abbreviations in
Wikipedia as the ground truth, we examine whether our
SEthesaurus and baselines can cover them. The experimen-
tal results can be found in Table 5. Notice, in this table,
SEthesaurus (top-40) denotes we select top-40 most similar
terms from the skip-gram model and the FastText model and
then combine these two sets as the candidate semantically
related terms. While SEthesaurus (top-20) denotes we only
select top-20 most similar terms from two different models.
Considering SEthesaurus (top-20) can make the number of
candidate semantically related terms of SEthesaurus at most
40. This setting can ensure a fair comparison with baseline
methods, since these baseline methods only consider 40
similar terms. For SEthesaurus (top-20), the coverage rate
of abbreviation of SEthesaurus is higher than SEthesaurus-
sg and SEthesaurus-ft (the improvement is 2.03% and 9.23%
respectively). This shows that combing two different mod-
els can effectively improve the coverage rate of abbrevi-
ation. For SEthesaurus (top-40), 721 (84.7%) of these 851
full names have abbreviations in our thesaurus, and our
SEthesaurus covers the abbreviations of 511 (70.87%) full
names in the ground truth. According to our observation,
two reasons result in the missing abbreviations. First, there
are some unusual abbreviations in the Wikipedia list, which
we believe developers are more likely to use full names
instead of the abbreviations, e.g., access method instead of
am, access server instead of as. Second, there are limitations
in our abbreviation inference heuristics, which can not find
abbreviations with unique string transformations, such as
802.11 for wireless lan, gtk+ for gimp toolkit, and i/f for
interface. In fact, our approach identifies these abbreviations
as semantically related to their full names. However, due
to their unique string transformation, general lexical rules
can not be used to discriminate them as abbreviations. After
compared with the Wikipedia abbreviation list, we can find
that our thesaurus contains much more software-specific
terms and more abbreviations (for example, abc for abstract
base class, sso for single sign-on). Furthermore, our approach
can find multiple abbreviations for a term. For example,
our approach finds 6 abbreviations {regex, reg exp, regexps,
regexpes, regexp, regexs} for regular expression in the Stack
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Fig. 8: The left bar chart shows the coverage rate with different number of words and the right bar chart shows that
coverage varies with tag frequency.

Overflow text, while the Wikipedia list includes only two
of these 6 abbreviations (i.e., {regex, regexp}).

4.4 The Coverage of Synonyms
Our approach identifies 60,844 synonym groups, which con-
tain 442,684 morphological terms. To examine the coverage
and accuracy of the identified synonyms in our thesaurus,
we first compare our results against the tag synonyms in
Stack Overflow. Stack Overflow community maintains a list
of tag synonym pairs in the collaborative way. By August
2018, there are 3,663 community-approved synonym pairs17.
Each pair has a synonym tag and a master tag. We take these
tag synonym pairs as the ground truth. According to the tag
naming convention in Stack Overflow, multi-words in a tag
is concatenated by “-”. But in the plain text, users are more
inclined to use spaces to separate them. Thus, we replace “-”
in the tag with space for the fair comparison. For example,
the tag visual-studio will be transformed into visual studio.

Then we compare our approach with the four baseline
methods (i.e., WordNet, SEWordSim, SEthesaurus-sg and
SEthesaurus-ft). When using WordNet as the baseline, for
each synonym tag (e.g., videojs) in the ground truth, we
check whether it is in a synonym group that WordNet iden-
tifies, and if so, we further check whether its corresponding
master tag (e.g., video.js) is also in the synonym group. When
using SEWordSim as the baseline, for each synonym tag in
the ground truth, we check whether it is in the SEWordSim
database, and if so, we further check whether the master tag
is in the list of the top-40 most similar words for the syn-
onym tag in the SEWordSim database. Notice SEWordSim
provides an API to check whether a term is in their database
and can return this term’s top-k most similar words. When
using SEthesaurus-sg, SEthesaurus-ft and SETheasurus, for
each synonym tag in the ground truth, we check whether it
is in a synonym group, and if so, we further check whether
its corresponding master tag is also in the synonym group.

The experimental results can be found in Table 6.
Consistent with Section 4.3, we also show the results of
SEthesaurus (top-40) and SEthesaurus (top-20) in this ta-
ble. For SEthesaurus (top-20), the coverage rate of syn-
onyms of SEthesaurus is also higher than SEthesaurus-sg
and SEthesaurus-ft (the improvement is 6.78% and 2.57%

17. http://stackoverflow.com/tags/synonyms

TABLE 6: The synonyms coverage of our thesaurus

Method #Covered
Synonym

#Covered
Master Coverage

WordNet 828 310 37.44%
SEWordSim 381 42 11.02%

SEthesaurus-sg 2,718 1,610 59.23%
SEthesaurus-ft 2,987 1,895 63.44%

SEthesaurus (top-40) 2,989 2,125 71.09%
SEthesaurus (top-20) 2,989 1,973 66.01%

respectively). This verifies that combing two different mod-
els can effectively improve the coverage rate of synonym.
For SEthesaurus (top-40), our SEthesaurus can cover 2,989
(81.60%) out of 3,663 synonym tags in the ground truth,
while WordNet and SEWordSim can only cover 828 (22.6%)
and 381 (10.4%) respectively. By comparing SEthesaurus-
sg and SEthesaurus-ft, we can find that FastText model
contributes more to our SEthesaurus than skip-gram model,
in term of synonym detection. By further analyzing 2,989
synonym tags, 2125 (71.09%) correct synonyms are con-
tained in our synonym groups.

We further analyze the reasons why our approach misses
864 synonym pairs. First, some synonym pairs are not
morphological and thus they are beyond the ability of
our approach, such as (cgridview, yii) and (dcos, mesosphere).
Second, the Stack Overflow community sometimes merges
fine-grained concepts into more general ones as tag syn-
onyms, such as (custom font, font), (twitter oauth, twitter) and
(memorystream, stream). However, such fine-grained terms
and general terms have different meanings in the discussion
text, and our approach does not regard them as synonyms.
Last, some synonym pairs are not semantic related, such as
(arraycopy, arrays) and (digest, hash).

4.5 Human Evaluation for Our Constructed Thesaurus

Based on the above evaluations, compared with several
community-cumulated ground truth, our thesaurus contain-
s much more software-specific terms, and a term in our the-
saurus often has several abbreviations and synonyms. How-
ever, our evaluations against these community-cumulated
ground truth only show that the correctness of a subset of
abbreviations and synonyms identified by our approach.
Moreover, these evaluations do not show whether many
other abbreviations and synonyms, which are not included
in the ground truth are correct or not.
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To verify the correctness of the abbreviations and syn-
onyms in our thesaurus, we recruit 2 master students major-
ing in computer science to perform the manual evaluation.
They both have several-year programming experience and
the quality of human evaluation can be guaranteed. As we
have a large number of abbreviations and synonyms to ex-
amine, we adopt a sampling method to select the validation
set. According to the widely-used sampling method [44],
we examine the minimum number MIN of data instances
to ensure that the estimated population is in a certain
confidence interval at a certain confidence level. This MIN
can be determined by the formula:

MIN =
n0

1 + n0−1
populationsize

(8)

here n0 depends on the selected confidence level and the
desired error margin: n0 = (Z2 × 0.25)/e2, where Z is
a confidence level z score and e is the error margin. For
the final human evaluation, we examine MIN instances
of relevant data for the error margin e = 0.05 at 95%
confidence level (i.e., MIN = 384).

Therefore, we randomly sample 384 abbreviation pairs
and 384 synonym pairs in our thesaurus for the human
evaluation. For each sampled pair, these two students first
independently evaluate its accuracy. Then, we compute
Cohen Kappa [45] to evaluate the inter-rater agreement.
For the pairs that the two students disagree, they have
to discuss and come to final decisions. Based on the final
decisions, we compute the accuracy of mined abbreviations
and synonyms. Note that to check if there are any human
evaluation bias, we carry out one more experiment (i.e.,
inserting 50 incorrect pairs among 50 randomly sampled
pairs from our method, without telling the participants). The
results show that two participants can accurately identify
all those 50 wrong pairs, demonstrating the fairness of our
method.

The human evaluation confirms that 280 (72.9%) abbre-
viation pairs and 332 (86.5%) synonym pairs18 are correct.
The Cohen Kappa metric among annotator decisions is 0.925
and 0.937 for abbreviations and synonyms, which indicates
almost perfect agreement [46].

We further analyze the reasons for those incorrect pairs.
In particular, two reasons result in the incorrect abbrevi-
ation pairs. First, the rules described in Section 2.6 could
erroneously classify terms as abbreviations, such as windows
xp as the abbreviation of windows explorer, or waver as the
abbreviation of waveform. These pairs of terms are semanti-
cally similar, but they are not abbreviations. Second, some
abbreviation errors are caused by erroneous synonyms and
synonym grouping. For example, btle is the abbreviation
of bluetooth le (bluetooth low energy). Our approach erro-
neously recognizes bluetooth le as the synonym of bluetooth.
Consequently, btle is erroneously regarded as an abbrevi-
ation of bluetooth. There are also two reasons resulting in
the incorrect synonyms. First, most incorrect synonym pairs
are caused by term pairs, which are both semantically and
lexically similar, but are not synonyms, such as (windows,
windowsrt) and (openssh, openssl). Second, other incorrect

18. Detailed experimental results are released in https://sedict.
github.io/
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Fig. 9: Precision and coverage rate with different threshold
values

synonym pairs are also caused by erroneous synonyms and
synonym grouping, which are similar to the example of the
incorrect abbreviation pairs, such as (btle, bluetooth).

4.6 Analysis on Parameter Optimization
There are some parameters needing optimization in our
proposed unsupervised approach. In this subsection, we
mainly perform sensitivity analysis for three parameters
(i.e., domain specificity score, sliding window size, and top-
k similar terms).

4.6.1 Domain Specificity Score
The threshold for domainspecificity can be used to dis-
criminate software-specific terms and the details of this
parameter can be found in Section 2.3. We try different
values within the range from 5 to 50 with the step as 5.
For each value, we run our program to obtain all domain-
specific terms and sample a fixed number of terms by
adopting Equation (8) for manual evaluation. We recruit 2
master students majoring in computer science to perform
the manual evaluation. For each sampled term, the two
students independently evaluate its accuracy. For the terms
that these two students disagree on, they have to discuss
and come to final decisions. When computing coverage
rate, we use tags in Stack Overflow and CodeProject as
the ground truth to compute the coverage rate. The final
results can be found in Figure 9. As seen in the figure, if
the threshold is larger than 10, the precision rate will not be
improved significantly, while the coverage rate will decrease
significantly. Therefore, we set the value of threshold to 10
in our study for balancing the precision and coverage.

4.6.2 Sliding Window Size
The sliding window size is an important parameter for both
the continuous skip-gram model and the FastText model.
We carry out an experiment to perform sensitivity analysis
on this parameter. In particular, we sample the sliding
window size from 1 to 30 with step size as 1 to the skip-gram
model and the FastText model respectively for generating
corresponding thesauruses. First we calculate the coverage
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Fig. 10: Coverage and MRR of synonym tag with different
values of the sliding window size

of synonyms (i.e., #Covered Master / #Covered Synonym),
which is introduced in Section 4.4. We also compute MRR
(Mean Reciprocal Rank) [47] to evaluate the precision of
the constructed thesauruses. Let k be the rank position
of the first morphological form in the candidate list for
a query term, then the reciprocal rank (RR) is defined as
1
k . MRR is the mean of the RRs over all queries. For each
pair in our ground truth (introduced in Section 4.4), we get
the master tag’s rank among the synonym tag’s semantic-
related words. As there are two models (i.e., the skip-gram
model and the FastText model), we take the mean value of
the two ranks as the final rank. We compute reciprocal rank
for all pairs and take the mean value as the thesaurus’ MRR.

The results can be found in Figure 10 and show that with
the increase of window size, the coverage and MRR value
are both increasing. But note that the increase is not signifi-
cant, but relatively steady especially when the window size
is larger than 5. However, the larger the window size, the
longer the training time. Therefore, we set the value of this
parameter to 5 for balancing the model effectiveness and
training efficiency.

4.6.3 Top-k Similar Terms
Top-k similar terms is an important parameter when extract-
ing semantically related terms. To analyze the influence of
this parameter, we test its value from 1 to 50 with the step
size as 1. For each value, we check the coverage of synonyms
as mentioned in Section 4.4 which shows the ability of our
model in finding semantic related terms. Figure 11 shows
the coverage rate with different values of the parameter k. In
this figure, we can find that with the increase of the value k,
the coverage is also increasing. But when the value is larger
than 40, the improvement is not significant. Therefore, we
set k as 40 in our study.

Notice that the MRR of synonym tag with different
values in Figure 10 is the average value of both the continu-
ous skip-gram model (i.e., SEthesaurus-sg) and the FastText
model (i.e., SEthesaurus-ft). While in Figure 11, the coverage
rate of synonym tag with different values of the parameter k
is based on our proposed SEthesaurus. Supposing that there
are 10 query terms, we get the correct synonyms in the 4
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Fig. 11: Coverage rate with different values of the parameter
k

of them in the SEthesaurus-ft model but 0 of them in the
SEthesaurus-sg model, leading to average MRR as 0.2. When
the same queries are applied for top-1 coverage, it is based
on the combination of SEthesaurus-ft and SEthesaurus-sg
(i.e., 4 of them are hit), leading to 0.4. That is why average
MRR can be smaller than top-1 coverage in these two
figures.

4.7 The Generality of Approach
To demonstrate the generality of our approach, we select
two other sites in other domains from Stack Exchange Net-
works (i.e., Mathematics Stack Exchange and English Lan-
guage & Usage Stack Exchange. Different from Stack Over-
flow, which is more related to engineering (i.e., software
engineering), the Math site is more related to science, and
the English usage site is more related to linguistics. By ap-
plying our approach to these sites, we successfully construct
the thesaurus for each of them. For mathematics thesaurus,
our approach mines 89,757 domain-specific terms, 1,624
abbreviations and 81,572 synonyms. For English-language
thesaurus, our approach extracts 99,285 domain-specific
terms, 370 abbreviations and 8,519 synonyms.

We repeat the same evaluation process to evaluate these
newly constructed thesauruses. For mathematics thesaurus,
it covers 867 (66.08%) tags in its site. For English-Language
thesaurus, it covers 267 (58.81%) tags in its site. One
Wikipedia page19 summarizes 261 pairs of mathematical
abbreviaiton pairs. Within 261 pairs, our mathematics the-
saurus covers 118 full names and 78 (66.10%) abbreviations.

Similar to synonym pairs in Stack Overflow, the commu-
nity Mathematics Stack Exchange20 and English Language
& Usage Stack Exchange21 also maintain their synonym
pairs. There are 157 synonym pairs in the math site and 229
synonym pairs in English site. By taking them as the ground
truth, our mathematics thesaurus covers 111 (70.70%) syn-
onym tags. For these synonym tags, it covers 81 (72.97%)

19. https://en.wikipedia.org/wiki/List of mathematical
abbreviations

20. https://math.stackexchange.com/tags/synonyms
21. https://english.stackexchange.com/tags/synonyms
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master tags. Our English-language thesaurus covers 191
(83.41%) synonym tags. For these synonym tags, it covers
137 (71.73%) master tags. More detailed experiment results
analysis can be found in Appendix. These results show that
given a corpus of domain-specific data, our approach can be
used to automatically construct a domain-specific thesaurus.

5 USEFULNESS OF OUR THESAURUS

To demonstrate the usefulness of the constructed thesaurus,
we develop three applications based on our thesaurus in
this section. We not only describe how we develop these
applications, but also evaluate the performance of these
applications by comparing with state-of-the-art baselines.

5.1 Supporting Software-Specific Text Normalization
The first application is to assist software-specific informa-
tion retrieval by using our thesaurus.

5.1.1 Background
NLP-based techniques have been widely used to support
software engineering tasks involving text data [48], [49],
[50]. As abbreviations and synonyms are commonly used in
software engineering text, normalizing these abbreviations
and synonyms becomes one of the fundamental steps to
achieve high-quality text mining results [15], [16]. Abbrevi-
ations and synonyms are often referred to as inflected (or
derived) words in natural language processing. The goal
of text normalization is to transform inflected (or derived)
words to their root form. Techniques for general English
text (such as stemming [51] or WordNet lemmatization)
are commonly adopted for software engineering text. Some
studies propose domain-specific techniques to normalize
source code vocabulary (e.g., expanding abbreviated iden-
tifiers). However, none of previous studies examine the nor-
malization of informal software engineering text on social
platforms.

5.1.2 Experiment Setup
Dataset. We randomly sample 100,000 questions from Stack
Overflow. To further demonstrate the generality of our
thesaurus, we also randomly sample 50,000 questions from
CodeProject22, which is another popular Q&A web site for
computer programming. We perform data preprocessing for
these sampled questions in the same way, which is described
in Section 2.2.
Baseline Methods. The task is to normalize the title and
content of the sampled questions. We develop a software-
specific lemmatizer based on our thesaurus for normalizing
abbreviations and synonyms in informal software engineer-
ing text. We compare the performance of our developed
lemmatizer with two baseline methods, which are common-
ly used for text normalization. These two baseline methods
are Porter stemming [51] and WordNet-based lemmatiza-
tion. In particular, for our developed lemmatizer, we trans-
form abbreviations and synonyms to their representative
terms in our thesaurus. Porter stemming reduces inflected
(or derived) words to their stems by removing derivational

22. http://www.codeproject.com/script/Answers/List.aspx??tab=
active

Fig. 12: The tags and their different forms in the question
title and content

affixes at the end of the words. WordNet-based lemmatiza-
tion transforms different forms of a word to their lemma
based on WordNet synset (i.e., set of synonyms created by
highly trained linguists).
Ground Truth and Evaluation Metrics. We adopt question
tags as the ground truth to evaluate the effectiveness of
the text normalization. Question tags can be considered as
metadata of question text. We normalize question tags in
the same way as we normalize the title and content of
the question using the specific text normalization method.
To mimic the information retrieval in software-engineering
context i.e., we put the tags of posts as the query, and the
question body as the documents. After the normalization,
the more common words the query and question body
share, the higher chance the question body can be searched
by the tag query. Then, we measure the effectiveness of a
text normalization method by coverage percentage of tags
in the title and content of the question before and after
text normalization. We take an average of the percentage
over all the sampled questions. Essentially, we investigate
how much text normalization can make question texts more
consistent with question metadata. Fig. 12 takes a question
as an example. Before text normalization, none of these two
tags appears in the title and content of the question. After
using our lemmatizer for normalization, all of these two tags
appear in the title and content of the question.

5.1.3 Result Analysis

As shown in Fig. 13, without text normalization, on aver-
age only 52.61% and 33.82% tags appear in the title and
content of the sampled questions from Stack Overflow and
CodeProject, respectively. This indicates that the consisten-
cy between question texts and question metadata is low.
After performing text normalization by our lemmatizer, the
percentage of tag coverage is boosted to 74.85% for the sam-
pled questions from Stack Overflow questions, and 59.48%
for the sampled questions from CodeProject questions. Al-
though Porter stemming and WordNet-based lemmatization
can also improve the consistency between question texts and
question metadata, the improvement in the percentage of
tag coverage is much smaller than our lemmatizer.
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Fig. 13: The average percentage of tags appearing in ques-
tion text by different text normalization methods

The Porter stemming can only find terms with deriva-
tional affixes, such as (upload, uploaded) or singular and plu-
ral forms, such as (script, scripts). The WordNet-based lem-
mitization can recognize more synonyms based on WordNet
synset, such as (os, operating system). However, WordNet
is a general thesaurus and lacks many software-specific
terms. In contrast, our thesaurus is constructed by mining
the vast amount of software engineering text. Therefore, it
can contain a much richer set of software-specific terms,
including their abbreviations and synonyms. Furthermore,
our thesaurus can recognize complicated synonyms, such
as (angular.js, angularjs) and (inheirt, inherit). However, these
complicated synonyms are difficult to find by using Porter
stemming and WordNet lemmatization. In summary, our
domain-specific thesaurus is more suitable for software-
specific text normalization than general stemming methods
or general English thesaurus.

5.2 Tag Synonyms Identification on Stack Overflow

There are tens of thousands of tags in Stack Overflow used
by different users in the community. Due to the diversity
of the human language, it is very likely that same-meaning
tags with slightly different forms co-exist in the site (e.g.,
pdfjs23, pdf.js24). Such synonym tags may cause the confusion
for users and make it difficult to retrieve posts by tags.

Although the community has proposed a list of synonym
tags25, there are still many more synonyms, which are not
discovered. In this section, we directly apply our approach
to find tag synonyms to complement existing synonym list
cumulated by the community manually. Note we need to
mine synonym tags, therefore we change the dataset from
text to all tags attached to questions in Stack Overflow.

In Stack Overflow, there are 15,930,617 questions and
each question must be attached with up to 5 tags. Therefore,
we regard tags for each question as a sentence, and feed
them into word embedding model. More details can be
found in our previous work [38]. For each tag, given its
semantic words from word embedding, we further exploit
the rule-based methods proposed in this paper to identify its

23. http://stackoverflow.com/tags/pdfjs/info
24. http://stackoverflow.com/tags/pdf.js/info
25. http://stackoverflow.com/tags/synonyms

TABLE 7: Misspelling examples in our thesaurus

Term Misspellings
entity-framework enitityframework, entityframewrok

wordpress wordpressy, wordprss, wordppress
mongodb mogodb, monogd, mondgodb, monglodb
variable varriable, varible, vairable, varaiables, varibles
servlets servle, servelt, servlett, servet

abbreviations and synonyms. Finally, we extract 758 pairs of
synonyms and 158 pairs of abbreviations.

We paste all pairs into a post26 in Meta Stack Overflow,
which is a site for users to discuss the workings and policies
of Stack Overflow rather than discussing programming
itself. Until now, it has received 76 upvotes, 9 favorite
question marks and some appreciating comments. The com-
munity have checked that 290 of them are synonyms or
abbreviations, 22 pairs are not synonyms or abbreviations,
and leaving the other 604 as undecided. The posts have been
viewed more than 1000 times so far. It shows that our ap-
proach can help to avoid the appearance of duplicated tags
and it can help to maintain the quality of Stack Overflow.

5.3 Software-specific Spelling Correction

5.3.1 Background
When developers write natural-language documents, such
as comments, documentations, blogs or Q&A posts, it is
natural that misspellings often occur. Stack Overflow is the
most popular programming Q&A site partially because of
the community efforts to maintain the quality of the ques-
tions and answers in the website [52]. In Stack Overflow,
the low-quality questions and answers will be edited by
the senior users to guarantee their quality for other readers.
For some editions, there are also some comments to briefly
describe what they change. Among these editions, 340,120
of them are about the spelling problem, since the word
”spell” appears in these comments. Note that this number
is highly underestimated, as not every editor will mark
their editions with detailed comments. Some misspelling
examples in our thesaurus can be found in Table 7. To avoid
these misspellings, developers need tools to support spell
checking in their editors or IDEs. Some researchers [53], [54]
use spell checkers (e.g., Aspell27, Hunspell28) to preprocess
software engineering text. However, these spell checkers
are trained on general English text and do not consid-
er software-specific terms and their common misspellings
which rarely appear in the general text. Therefore, there is an
urgent need to develop a software-specific spelling checking
tool to alleviate the community efforts so that they can focus
on more important editions.

5.3.2 Experiment setup
Collecting dataset: We first get all editing history of ques-
tion titles in Stack Overflow29. Then, we compare the edition
and the original post, note that only the pairs which are

26. http://meta.stackoverflow.com/questions/342097/
a-list-of-tag-synonyms-not-proposed-in-stack-overflow

27. http://aspell.net/
28. https://hunspell.github.io/
29. https://archive.org/download/stackexchange/stackoverflow.

com-PostHistory.7z
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TABLE 8: Performance comparison for spelling correction

Method # Covered
Misspellings Coverage # Accurate

Corrections Accuracy

Hunspell 572 73.05% 500 87.41%
Aspell 576 73.56% 499 86.63%

SEThesaurus 638 81.48% 522 81.82%
Hunspell + SEThesaurus 703 89.78% 641 91.18%

Aspell + SEThesaurus 709 90.55% 639 90.13%

similar enough (i.e., Jaccard similarity is larger than 0.8)
are left. After that, we use the differencing tool30 to dis-
criminate the replacement of words between the original
title and after-edit title. We store all of these editing pairs
(i.e., (original word, replacement word)). Then, we adopt the
length difference to filter out some obvious errors, which
are not misspellings, such as pairs (please help to understand,
understanding). Later, we take the replacement pairs, whose
frequency is larger than 10, to avoid the noises. The auto-
correction method of SEthesaurus is based on the histori-
cal knowledge. Therefore, we partition the data into two
parts according to the creation time. In particular, the data
between 2008 and 2015 is used to generate SEthesaurus
and the remaining data (i.e., the data between 2016 and
2018) is used to extract ground truth. Finally, we collect 783
replacement pairs as the testing dataset.
Baselines: We take two widely-used spelling checker (i.e,
Hunsepll and Aspell) for comparison with our spelling
checker (i.e., SEdic). For each pair, we firstly check whether
the original word can be judged as misspellings by these
two methods. Once the one is judged as a wrong spelling,
we mark it as covered. Then, we further check whether the
edited ones in the ground truth are also in the suggestion
list for the given word by these two methods. Finally, we
calculate the accuracy for all pairs.

Our auto-correction method based on SEthesaurus is
slightly different from two baseline methods. First, the
SEthesaurus is stored as a thesaurus by hashmap with the
normalized form as the key, and all its synonyms and ab-
breviations as the value. We mark the pair as covered if the
original word is in our dataset. Then for the covered pairs, if
the normalized form of that original word is the replacement
word in the ground truth, we mark it as accurate.

5.3.3 Result Analysis

The results can be found in Table 8. From this table, we
can find that the coverage rate of our SEThesaurus based
spell checker is higher than Hunspell and Aspell, although
many misspellings in Stack Overflow also widely appear in
the general text, such as (anther, another), (shure, sure). That
is because many misspellings are derived from software-
specific terms, which can not be covered by the general
spelling checkers. To further take both the general spelling
error and domain-specific typo into the consideration, we
combine the general spell checker with the specific SEthe-
saurus to process software-specific text. Table 8 shows that
both the coverage rate (> 85%) and accuracy (> 90%) are
much higher than any single method.

30. https://docs.python.org/2/library/difflib.html

6 THREATS TO VALIDITY

In this section, we mainly discuss the potential threats to
validity of our empirical studies.

Threats to internal validity are mainly concerned with
the uncontrolled internal factors that might have influence
on the experimental results. The first threat is the potential
faults introduced during our approach implementation. To
reduce this threat, we use manually designed test cases
to verify the correctness of our implementation. We also
use some mature third-party libraries to implement our
approach. For example, we use the implementations for the
skip-gram model and the FastText model provided by the
gensim package31. Besides, there exists many parameters in
our approach and inappropriate parameter values will affect
the quality of constructed thesaurus. To select appropriate
values for these parameters, we perform sensitivity analysis
and the results of sensitivity analysis for these parameters
can be found in Section 4.6.

Threats to external validity are about whether the ob-
served experimental results can be generalized to other
subjects. Based on the above analysis, we find our proposed
approach can automatically construct software-specific the-
saurus. To demonstrate the generality of our approach, we
select two sites in other domains from Stack Exchange
Networks (i.e., Mathematics Stack Exchange and English
Language & Usage Stack Exchange) and build thesauruses
for these two domains. Then, we also design some exper-
iments (i.e., tag coverage, abbreviation coverage and tag
synonyms coverage) and the results show that our approach
still has a good performance in other domain corpora.

Threats to conclusion validity are mainly concerned with
judging bias in human evaluation (in Section 4.5). To ensure
that these two students can judge the pairs fairly and
objectively, we design additional experiments in which we
randomly extract 50 wrong pairs for 50 times independently.
Then we let these two students verify the correctness of
extracted pairs and find that the students can correctly
identify all the wrong and correct pairs.

7 RELATED WORK

During the process of software development, developers
often use abbreviations and acronyms in identifiers and
domain-specific terms in source code and documentation of
the project. This phenomena pose challenges to the effective-
ness of NLP-based techniques in exploiting software text.
Previous studies attempting at expanding abbreviations in
identifiers often resort to string edit distance [55], string
frequencies from source code [56], [57], word co-occurrence
data [18], or a combination of several techniques. These
approaches inspire the design of lexical rules and transfor-
mations in our approach.

Informal discussions on social platforms for developers
(e.g., Stack Overflow, CodeProject) contain many abbrevi-
ations, synonyms and misspellings. Furthermore, informal
discussions on social platforms cover a much broader range
of programming knowledge, when compared with tradi-
tional software text that previous work has focused on.
These facts could make heuristics developed for expanding

31. https://radimrehurek.com/gensim/
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abbreviated identifiers unreliable when applied to informal
discussions. For example, jsp may be regarded as the ab-
breviation of javascript, google apps as the synonym of google
apis, or yaml as the synonym of xaml.

To reliably infer morphological forms of software-
specific terms in a broad range of informal discussions,
we must analyze semantic relevance between software-
specific terms and determine morphological forms. One
way is to develop a software-specific thesaurus like the
WordNet [23] for general text, and the BioThesaurus [58]
for biology domain. In fact, most of identifier expansion
approaches [15], [16], [17], [18], [19] use this thesaurus or
the other external dictionary (such as general English dictio-
nary, domain-specific ontology and/or a list of well-known
abbreviations) and then rank the relevance of abbreviation
and expansions. Although such dictionaries are useful for
reasoning word similarity, it requires significant time and
efforts to build and it is difficult to scale it up and keep
it up-to-date. This is why we do not want our approach
to rely on such dictionaries. Indeed, our study presents an
automatic approach to construct a high-quality thesaurus of
software-specific terms and morphological forms by mining
the text data alone.

Researchers have made some attempts to automatically
infer semantically related terms in software engineering
text [18], [20], [21], [22], [59], [60]. However, some important
assumptions are made on these proposed techniques, for ex-
ample, relying on project-specific naming or documentation
convention [22], [61], lexical difference patterns between
sentences [21], or the availability of certain contextual infor-
mation (e.g., dictionary, question tags) [18], [32], [62]. Such
assumptions lack the generality for other data. Different
from previous studies, we resort to unsupervised word rep-
resentations (i.e., word embeddings) [27] to capture word se-
mantics from a large corpus of unlabeled software engineer-
ing text. Recently, word embeddings have been successfully
applied to various software engineering problems involving
text data, such as document retrieval [1], [63], API/library
recommendation [38], [64], [65], [66], semantically related
posts prediction [6]. Different from previous studies, based
on semantically similar software-specific terms, we want
to infer a group of morphological forms which represent
a distinct concept in informal discussions.

Beyer et al. [67] develop a tag synonym suggestion
tool to generate tag synonyms. Their method is based on
rules derived from the human observations of existing tag
synonym pairs in Stack Overflow. Then, they [68] use com-
munity detection techniques, which can assist in the analysis
of topic trend on Stack Overflow, to group tag synonym
pairs into topics. Our approach differs from their work in
two aspects: 1) their work involves only about 3,000 known
tag synonym pairs, while our work identifies more than ten-
times software-specific terms and discovers morphological
relations among these terms; 2) their work only studies
Stack Overflow tags, while our work applies the morpho-
logical forms, which are mined from Stack Overflow, to
normalize the text from CodeProject.

8 CONCLUSION AND FUTURE WORK

In this paper, we present an automatic approach for mining
a thesaurus of software-specific terms and commonly-used
morphological forms from informal software engineering
discussions. Our evaluation shows that our thesaurus covers
a large set of software-specific terms, abbreviations and
synonyms with high accuracy, and we also successfully ver-
ify the generality of our approach in constructing domain-
specific thesaurus given other datasets. Based on the extract-
ed thesaurus from Stack Overflow, we further develop three
applications to demonstrate the usefulness of the thesaurus.

In the future, we want to deepen our research in two
directions. First, we will improve the effectiveness of our
method by refining each step in the pipeline including
adopting better phrase-detection algorithm, filtering out
more false positives. As there are many ad-hoc rules in this
work, we hope to adopt some supervised learning methods
to fully automatically extract those rules for extracting mor-
phological terms. On the other hand, we will also extend our
study into other domains for constructing domain-specific
thesaurus like medicine or social science.
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