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ABSTRACT
GUI animations, such as card movement, menu slide in/out, snack-
bar display, provide appealing user experience and enhance the
usability of mobile applications. These GUI animations should not
violate the platform’s UI design guidelines (referred to as design-
don’t guideline in this work) regarding component motion and
interaction, content appearing and disappearing, and elevation and
shadow changes. However, none of existing static code analysis,
functional GUI testing and GUI image comparison techniques can
“see” the GUI animations on the scree, and thus they cannot support
the linting of GUI animations against design-don’t guidelines. In
this work, we formulate this GUI animation linting problem as a
multi-class screencast classification task, but we do not have suf-
ficient labeled GUI animations to train the classifier. Instead, we
propose an unsupervised, computer-vision based adversarial au-
toencoder to solve this linting problem. Our autoencoder learns to
group similar GUI animations by “seeing” lots of unlabeled real-
application GUI animations and learning to generate them. As the
first work of its kind, we build the datasets of synthetic and real-
world GUI animations. Through experiments on these datasets, we
systematically investigate the learning capability of our model and
its effectiveness and practicality for linting GUI animations, and
identify the challenges in this linting problem for future work.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Software usability.
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1 INTRODUCTION
Graphical User Interface (GUI) is an ubiquitous feature of mobile
applications. Mobile platforms provide GUI design guidelines to
which the mobile applications run on the platforms are expected
to adhere, for example, Android Material Design and iOS Design
Themes. In addition to the guidelines about static GUI visual ef-
fects like color system and typography [5], many design guidelines
are about GUI animations, such as sliding in/out menu or sheet,
expanding/collapsing cards. Figure 1 shows two examples of GUI
animation1 guidelines in the Android Material Design: (a) regarding
the use of a visible scrim with modal bottom sheets; (b) regarding
how to reveal card information.

GUI animations, if done properly according to such design guide-
lines, make a GUI more appealing and more usable. But a design
guideline documentation has so many rules, regarding many as-
pects of GUI design such as layout, color, typography, shape, motion,
which make it nearly impossible for a developer to remember all
these rules and properly adopt them in actual app development. For
example, Figure 7 shows some real-application GUIs that violate
some design-don’t guidelines in Figure 1 and Table 1. Although
such GUI design violations do not affect the functionalities of an
application, they may result in poor user experience.

It is desirable to automatically validate the GUI animation of
an application against design-don’t guidelines to flag potential
GUI design violations. This type of software tool is called lint or
linter. Almost all major programming languages and platforms have

1We cannot show animated images in the paper. All GUI animation examples in this
paper are available at https://github.com/DehaiZhao/Seenomaly.

https://doi.org/10.1145/3377811.3380411
https://doi.org/10.1145/3377811.3380411
https://doi.org/10.1145/3377811.3380411
https://material.io/design/introduction/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://github.com/DehaiZhao/Seenomaly
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Figure 1: Examples of GUI Animation Dos versus Don’ts

corresponding lint tools, to name a few, the origin Unix lint for C,
the famous FindBugs and CheckStyle for Java, and StyleLint for
Cascading Style Sheet. These lint tools rely on human-engineered
rules to detect bugs and stylistic errors.

Unfortunately, it is often not straightforward to convert GUI
design-don’t guidelines into programming rules, especially when
they involve GUI animation effects. This is why many GUI anima-
tion guidelines have to be accompanied by illustrative do and don’t
examples. Furthermore, modern mobile platforms have very com-
plex GUI style and theme systems (see for example Style and Theme
of Android system). Developers can specify the desired style either
declaratively in manifest file or programmatically in source code.
They can also extend and customize existing styles and themes. All
these complexities make it difficult, if not impossible, to precisely
determine the actual GUI visual effects by static program analysis.

GUI testing [11, 13, 30, 36] can dynamically explores GUI behav-
iors of an application. However, GUI testing techniques, including
the recently proposed deep learning based techniques [11, 36], fo-
cus on simulating the user interaction with the GUIs to trigger
the app functionalities. Their effectiveness is evaluated with the
code and GUI coverage. They cannot validate the visual effects
of GUI designs. Moran et al. [24] recently proposes a computer-
vision based method to detect the violations of an implemented
GUI against the up-front UI design. Their technique examine only
static GUI visual effects. However, GUI animations involve compo-
nent movement, appearing and/or disappearing, and thus cannot
be reliably detected by analyzing static GUI images (see examples
in Figure 4 and the discussion in Section 4.1). Furthermore, their
technique assumes that the two compared GUIs are largely similar
but have minor differences which indicates the design violations.
This assumption obviously does not hold for the actual GUIs (e.g.,
those in Figure 7) that violate certain design guidelines and the GUI
animation examples illustrating the guidelines (e.g., those in Fig. 1).

In fact, the do and don’t GUI animations illustrating a design
guideline represent a class of conforming and violating GUIs. In
this sense, we can regard the validation of a GUI animation against
several design-don’t guidelines as a multi-class classification prob-
lem: given a GUI animation, predict the design-don’t guideline that
this GUI animation likely conforms (or violates). Multi-class video
classification [15, 28, 33] has been well studied in computer vision
domain, and the recent advances of deep learning based methods
have led to many breakthroughs. Unfortunately, we cannot adopt
these multi-class video classification techniques to our GUI anima-
tion linting problem, because they are supervised learning methods
which demand large amount of labeled video data. However, we

have only a very small number of illustrative GUI animation exam-
ples for each design guideline. In machine learning terminology, our
problem is a few-shot learning problem [31]. Manually collecting a
large number of conforming and violating GUI animations for each
design guideline would demand significant time and effort.

In this paper, we propose an unsupervised deep learning method
to solve the GUI animation linting problem in the context of few
shot learning. We first use automatic GUI exploration method [12]
to build a large dataset of unlabeled GUI animations. Using this
dataset, we train a vision-based GUI animation feature extractor
to learn to extract important temporal-spatial features of GUI ani-
mations in an unsupervised way. Next, we use the trained feature
extractor to map a few typical GUI animations that violate a design-
don’t guideline into a dense vector space. A GUI animation to be
linted is also mapped into this vector space. We can then deter-
mine the design-don’t guideline that this linted GUI animation
most likely violates by a simple k-nearest neighbor (KNN) search
of the most similar violating GUI animations. As KNN is a non-
parametric method which does not require model training, our
approach elegantly solves the challenge of few shot learning.

We implement our approach and use the tool to lint the GUI
animations of Android mobile applications against nine Android
Material design guidelines that cover diverse animation aspects,
screen positions and UI components. We build a large-scale unla-
beled real-application GUI animations from the Rico dataset [12]
for training our adversarial autoencoder. Through experiments on
a dataset of 9000 labeled synthetic GUI animations, we confirm
the practical settings for applying our approach and the effective-
ness of our model design over other model variants. Through ex-
periments on a dataset of 225 labeled, distinctive real-world GUI
animations, we show that our approach can accurately lint real-
world GUI animations against a small number of GUI animation
examples of design-don’t guidelines. As the first work of its kind,
our experiments also identify several challenging GUI animations
(instantaneous GUI animations, simultaneous multiple component
animations) which deserve further research.

We make the following contributions in this paper:

• To the best of our knowledge, our work is the first to lint
GUI animation effects against design-don’t guidelines.

• We propose the first deep-learning based computer vision
technique for the GUI animation linting problem.

• The proposed model is trained by unsupervised learning and
the unlabeled training data is easy to collect.

• Our experiments confirm the effectiveness of our approach
on both synthetic and real-world GUI animations.

2 APPROACH
Our approach aims to lint the GUI animations of an application in
response to the user actions (referred to as the linted GUI animation)
against a list of the design-don’t guidelines in a design-guideline
documentation (e.g., Google Material Design). As illustrated in
Fig. 2, we formulate this linting task as a multi-class GUI-animation
classification problem, and solve the problem by the k-Nearest
Neighbor (KNN) search of the design-don’t guideline that has the
most similar GUI animation examples to the linted GUI anima-
tion. We design an adversarial autoencoder based feature extractor,

https://developer.android.com/guide/topics/ui/look-and-feel/themes
https://material.io/design/introduction/
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Figure 2: Approach Overview

which learns to extract abstract temporal and spatial feature rep-
resentations of unlabeled real-application GUI animations in an
unsupervised way, in the absence of a large number of the labeled
GUI animations.

2.1 Input: Screencasts of GUI Animations
GUI animations can be triggered by users (e.g., slide in/out menu)
or by applications (e.g.,. display snackbars). The GUI animation
effect can be recorded in a GUI screencast, i.e., a sequence of GUI
screenshots taken at a fixed time interval. A GUI screenshot is a
2-dimensional (height and width) image of the application’s GUI.

2.1.1 Input Types. As shown in Figure 2, our approach has three
types of input GUI animations. The first type is the linted GUI ani-
mation screencast that the developer wants to validate against a list
of design-don’t guidelines. The second type is a small number of
the GUI animation screencasts that demonstrate the design-don’t
guideline (see examples in Figure 1), against which the linted GUI
animation is compared. The second type of GUI animations is the
labeled data for a design-don’t guideline, and can be collected from
the design-guideline documentation, online blogs discussing rele-
vant design guidelines, and real applications. The third type is a
large number of GUI animation screencasts that are automatically
collected from real applications [8, 12]. These screencasts are un-
labeled as we do not know whether and which design guideline
they violate. We use this large amount of unlabeled data to train
the unsupervised GUI animation feature extractor (see Section 2.2).

2.1.2 GUI Animation Capturing. We record aGUI animation screen-
cast at 5 screenshot frames per second (5 fps). This recording rate
can record significant screen changes during GUI animation, with-
out recording many static frames in between the screen changes.
The GUI animation screencasts are recorded in full RGB color. We
record a GUI animation screencast for each individual user action,
rather than a continuous screencast that may involve multiple
user actions and also no-action periods. The recording starts after
the user interacts with the application and the significant screen
changes are detected, and it stops when the next user action comes
or the screen remains static over 1 second. We set 5 seconds as the
maximum recording duration, because we observe that an individ-
ual GUI animation is rarely longer than 5 seconds.

Based on Android material design, touch targets should be at
least 48 x 48 dp (density-independent pixel). Therefore, we consider
the screen as static if the two adjacent frames have pixel differences

Figure 3: Model Architecture

less than 48 x 48 dp (may translate into different numbers of phys-
ical pixels depending on the screen size and resolution. see Pixel
Density). This threshold filters out minor GUI changes like the time
changes or notification changes in the system bar. Note that we do
not stop recording immediately after the first two static frames are
detected, because some static frames may be recorded between the
two screen changes during the GUI animation.

2.2 GUI Animation Feature Extractor
As the examples in Figure 1 and Figure 7 show, the GUI animations
that violate the same design-don’t guideline can be very differ-
ent in the detailed GUI designs (e.g., contents and visual effects).
This makes it impossible to directly measure the similarity of GUI
animations with respect to a design-don’t guideline in the high-
dimensional screencast space. Instead, low-dimensional abstract
temporal-spatial features of similar GUI animations with respect
to a design-don’t guideline must be extracted from the screencasts.
Unfortunately, the amount of the examples that demonstrates the
design-don’t guideline (i.e., the labeled data) is not enough to ef-
fectively train a GUI animation feature extractor in a supervised
way. However, the GUI animations that conform or violate certain
design guidelines are present, albeit implicit, in the real applications
We design an unsupervised GUI animation feature extractor which
learns to extract the latent temporal-spatial feature representations
from such unlabeled real-application GUI animations.

2.2.1 Model Architecture. Our feature extractor is based on deep
generative models: variational autoencoder (VAE) and generative
adversarial network (GAN). The core idea to infer the latent temporal-
spatial feature representations by learning to generate GUI anima-
tion screencasts and discriminate the real GUI animation screen-
casts from the generated ones. As shown in Figure 3, our model
consists of three components: a VAE that learns to reconstruct the
input GUI animation screencast, a GAN that enhance the genera-
tion capability of the VAE by adversarial training, and an additional
feature encoder network that learns more abstract feature represen-
tation from the reconstructed screencast. As the input screencasts
are temporal-spatial data, the VAE encoder, the discriminator and
the feature encoder use 3D Convolutional Neural Network (3D-
CNN) [33] to extract temporal-spatial features from the screencasts.
A 3D convolutional kernel with k ∗ k spatial size and d temporal
depth slides over a sequence of frames on three directions (height,

https://material.io/design/layout/spacing-methods.html#touch-targets
https://material.io/design/layout/pixel-density.html
https://material.io/design/layout/pixel-density.html
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width and depth). 3D-CNN has been successfully used for the action
recognition tasks [29], which is similar to our linting task.

The VAE, GAN and feature encoder networks are jointly trained
using unlabeled GUI animation screencasts, and the training is
guided by three loss functions in different networks that aim to
minimize the distance between the input screencasts and the gen-
erated screencasts, as well as between the latent feature vectors
of these screencasts. These loss functions are the reconstruction
loss Lr ec for the VAE network, the adversarial loss Ladv for the
GAN, and the encoder loss Lenc for the additional feature encoder.
These three loss functions are combined together as the model loss
L = Lr ec + Ladv + Lenc to optimize the networks jointly.

At the inference time, the VAE encoder and the additional feature
encoder are used to obtain Z and Ẑ for the input and the recon-
structed GUI animation screencast, respectively, which are then
concatenated to map the input screencast into the latent feature
space. In this space, the similarity of the GUI animations can be
determined by the L2 distance of their feature vectors.

2.2.2 Variational Autoencoder Network. We adopt the VAE net-
work because of its capability of dimensionality reduction [16],
which meets our goal to extract low-dimensional temporal-spatial
features from high-dimensional GUI animation screencasts. The
VAE network consists of an encoder subnetwork (VAEE ) and a
decoder subnetwork VAED . In our model, the input X is a GUI
animation screencast as descried in Section 2.1. The encoder sub-
network is a 3D-CNN with batch normalization [33] and ReLU
activation (ReLU(a)=max(0,a)). It encodes the input GUI animation
screencast X into a low-dimensional latent vector Z . The decoder
subnetwork VAED works in the same way as the generator in
GAN [14], but we use 3D instead of 2D convolutional transpose
layers [37]. It generates a GUI animation screencast X̂ from the
latent vector Z . X̂ is referred to as the reconstructed screencast.
We also use batch normalization and ReLU activation in VAED .
Through this encode-reconstruct process, the VAE can be trained
with unlabeled input data, which fits well with our data setting.

The learning objective of the VAE network is to minimize the
difference between the input X and the reconstructed input X̂ .
In this work, we compute L1 distance between X and X̂ as the
loss function of the VAE network (referred to as reconstruction
loss): Lr ec = ∥X − X̂ ∥1 =

∑N
i=1∥ fi − f̂i ∥1, where fi and f̂i are the

i-th screenshot in X and X̂ respectively. By minimizing the recon-
struction loss, the latent vector Z can capture the most important
temporal-spatial features of the inputX such that the reconstructed
input X̂ has the least information loss.

2.2.3 Adversarial Training by GAN. Although the VAE is generally
effective in dimensionality reduction, the latent feature represen-
tation Z learned by the VAE alone is often not good enough to
reconstruct the input screencast [19]. Inspired by adversarial au-
toencoder in [17, 20], we adopt the adversarial training to enhance
the reconstruction of the input GUI animation screencast by the
VAE. Adversarial training was introduced in GAN [14] which is
a leading technique for unsupervised representation learning. A
GAN consists of a pair of networks: a generatorG tries to generate
samples from a data distribution and a discriminator D tries to dis-
tinguish real samples and generated fake samples. The network is

trained in a min-max game where the generator seeks to maximally
fool the discriminator while simultaneously the discriminator seeks
to determine the sample validity (i.e. real versus fake), and the two
networks finally reach Nash equilibrium [25].

In our model, the VAE decoder plays the role of the generator
G. The discriminator D is similar with the discriminator network
in Deep Convolutional Generative Adversarial Network (DCGAN)
[26], but our model uses 3D instead of 2D convolutional layers.
This discriminator is a binary classifier to predict real or fake input.
In our work, the real input is X and the fake input is X̂ . In the
adversarial training setting, the generator is updated based on the
classification output of the discriminator. The loss of the discrimi-
nator (referred to as adversarial loss) is the cross-entropy loss of
the binary classification output: Ladv = logD(X ) + log(1 − D(X̂ )).

2.2.4 Feature Encoder Network. In addition to the VAE encoder that
learns the latent feature representation Z from the input screencast
X , we add an additional feature encoder that learns an additional
latent feature representation Ẑ from the reconstructed screencast
X̂ . The underlying intuition is that Ẑ would be a more abstract
feature representation than Z , because X̂ is reconstructed from the
most important features of X only. The feature encoder network
E has the same network structure as the VAE encoder VAEE , but
the two networks do not share weights so that different feature
representations can be extracted. For the training of E, we mini-
mize the L2 distance between Z and Ẑ so that E can learn how to
extract useful features from the reconstructed screencast. That is,
the encoder loss function of E is Lenc = ∥Z − Ẑ ∥2.

2.3 GUI Animation Linting by KNN Search
Given a GUI animation screencast, we want to determine if it vio-
lates some design-don’t guidelines, and if so, which guideline. Our
approach regards a design-don’t guideline as a class of GUI design
violation (see examples in Figure 7). As our GUI animation screen-
casts are recorded for each individual user action, they generally
involve only one primary animation effect, and one design violation
(if any)). Therefore, we solve the GUI Animation linting problem
by a KNN search based multi-class classification.

Specifically, we use the VAE encoder and the additional feature
encoder to map both the linted GUI animation and the GUI anima-
tion examples of design-don’t guidelines into a low-dimensional
latent feature space. Then, we find the top-k GUI animation exam-
ples that are the closet to the linted GUI animation in the feature
space. The distance of the two GUI animations is computed by the
L2 distance their feature vectors v1 and v2, i.e., ∥v1 − v2∥2. We
use the majority vote by the k-nearest GUI animation examples
to determine the guideline that the linted GUI animation violates.
If the majority vote has a tie, we compare the average distance of
the GUI animation examples of the tie guidelines, and consider the
guideline with the shortest average distance as the guideline that
the linted GUI animation violates.

3 TOOL IMPLEMENTATION
Our current tool2 takes GUI animation screencasts as the input.
Each sample contains 8 frames and has the height andwidth 281 and

2The code is available on https://github.com/DehaiZhao/Seenomaly.

https://github.com/DehaiZhao/Seenomaly
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Figure 4: Design Violations Look Normal in Static Images

500 respectively. All input GUI animation screencasts are stored in
the same format (animated GIFs). We use the setting of 8 screenshot
frames because this setting is long enough to cover the duration of
most GUI animations, and contains the least duplicate frames. The
height and width setting are the same as that of the GUI animation
screencasts in the Rico dataset [12]. In this way, we do not need
to scale the size of the large amount of unlabeled GUI animation
screencasts derived from the screencasts in the Rico dataset (see Sec-
tion 4.2.3). For the screencasts that do not meet these requirements,
our input processor normalizes them accordingly by sampling 8
frames (as many distinct ones as possible) and by scaling up/down
the screencasts to 281×500.

4 EXPERIMENT DESIGN
We now describe the choice of design-don’t guidelines used in our
study, the datasets for training and evaluating our model, and the
evaluation metrics used in our experiments.

4.1 The Design-Don’t Guidelines
Table 1 summarizes the nine design-don’t guidelines in Android
Material Design we use to test the effectiveness and practicality of
our approach. The nine guidelines cover common GUI animation as-
pects in Android Material design, including 5 elevation, 1 light and
shadow, 4 content display, 3 component motion and 3 component
interaction guidelines. They involve common Android UI compo-
nents for user interaction, including dialog, snackbar, banner, app
bar, sheet, menu, popup window, card, and these components may
appear at the top, bottom, side, middle or anywhere on the screen.
The guideline C4 may involve any UI components. The guideline
C10 is not a specific design-don’t guideline. Instead, it represents
the normal GUI animations that do not violate any design-don’t
guidelines, to the best of our Android GUI design knowledge.

Furthermore, we select these nine guidelines because they all in-
volve component motion, appearing and/or disappearing. As such,
they cannot be reliably detected by analyzing static GUI images.
Figure 4 shows three static GUI images after relevant GUI anima-
tions end: (a) a window pops up over a non-scrimmed background
(C1); (b) a menu slides out without boundary shadow (C3); and
(c) two banners are stacked at the top of the screen (C9). Without
looking at the GUI animations that lead to these GUI images, these
GUI images alone looks like normal GUI designs. But they actually
violate the design-don’t guidelines for GUI animations.

We carefully select the design-don’t guidelines that have sim-
ilar or related GUI animation effects to test the capability of our
approach to distinguish them. For example, C1, C2 and C3 are all
related to elevation. But C1 and C2 express elevation difference
by scrimmed backgrounds, while C3 does so by shadows. C1, C2
and C3 are also different in terms of UI components involved and
screen position affected: C1 involves dialogs which usually appear
in the middle of the screen, C2 involves sheets appearing at the
bottom of the screen, and C3 involves menu appearing at the side
or popup window which may appear anywhere. C4 and C5 are
also related. But C4 is generic about any material surface passing
through another material surface, while C5 is specific about moving
one card behind other card(s). Both C5 and C6 are card animation.
But C5 is about card movement, while C6 is about card flipping.
Both C2 and C7 involves something appearing from the bottom of
the screen, but sheets in C2 is usually much larger than snackbars
in C7. Both C7 and C8 are snackbar animation. But C7 is about
snackbar blocking app bar, while C8 is about multiple snackbars.

However, we avoid to choosing repeating guidelines which may
have little added value to the already-chosen guidelines in the
experiments. For example, snackbars and banners are similar in
terms of content display, but they appear in different places on
the screen and also behave differently. As we already have two
guidelines cover similar GUI animation effects of snackbars and
banners, (i.e., C8 and C9 stack multiple snackbars or banners, but
one changes the screen bottom and the other changes the screen
top), we do not include the guideline “Place a banner in front of a top
app bar” which essentially repeats another similar GUI animation
effects of snackbars and banners, compared with C7.

4.2 Datasets
We build two labeled datasets (one with real-world GUI animations
and the other with synthetic GUI animations) for evaluating our
model, and a dataset of unlabeled real-application GUI animations
for unsupervised training of GUI animation feature extractor.

4.2.1 Labeled Datasets of Real-World GUI Animations. We build a
dataset of real-world GUI animations of the design-don’t guidelines
in Table 1 from three sources. First, we collect the illustrative ex-
amples of the selected design-don’t guidelines in Android material
design website (e.g., the don’ts in Figure 1). Second, we search the
Web using the guideline descriptions to find more illustrative ex-
amples. For example, we find the online blog “AlexZH DEV” which
contains some examples of the C1, C3 and C9 guideline in Table 1.
Third, we collect the violations of the design-don’t guidelines from
the Android apps developed by the students in a Master-level An-
droid development course in our school. Finally, we collect 25 real-
world GUI animation screencasts for each design-don’t guideline
in Table 1. For the guideline C10, we randomly sample 25 normal
GUI animations from the unlabeled dataset of real-application GUI
animations described in Section 4.2.3. We use this real-world dataset
to evaluate our model’s performance in practice (RQ3). In order to
test the capability boundary of our approach, we try our best to
maximize the distinction between the selected GUI animations in
terms of GUI content and visual effects (see examples in Figure 7),
rather than having many similar ones to “inflate” the performance.

https://material.io/design/introduction/
https://material.io/design/introduction/
https://alexzh.com
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Table 1: Design-Don’t Guidelines Used in Our Study

Design-don’t Guideline Animation Aspect Screen Position UI Component
C1: Lack of scrimmed background Elevation MIDDLE Dialog
C2: Invisible scrim of modal bottom sheet Elevation BOTTOM Sheet

C3: Lack of shadow Elevation, Light and shadow SIDE
Anywhere

Menu
PopupWindow

C4: Pass through other material Elevation, Component Motion Anywhere Any component
C5: Move one card behind other card(s) Elevation, Component Motion Anywhere Cards
C6: Flip card to reveal information Content display, Component Motion Anywhere Card
C7: Snackbar blocks bottom app bar Content display, Component interaction BOTTOM Snackbar, App bar
C8: Stack multiple snackbars Content display, Component interaction BOTTOM Snackbars
C9: Stack multiple banners Content display, Component interaction TOP Banners
C10: Normal GUI animation Anything Anywhere Any component

4.2.2 Labeled Datasets of Synthetic GUI Animations. We semi-au-
tomatically build a dataset of synthetic GUI design violations based
on the collected real-world design violations and the real applica-
tion GUI screenshots. First, we use the screen-change detection
method described in Section 2.1.2 to detect the screen changes in
each of the real-world GUI animation screencasts (including those
of C10) in the real-world dataset, and then crop the changing GUI
regions during the animation as a screencast. Then, we randomly
select a real-application GUI screenshot from the Rico dataset [12],
and replay the screencast of the cropped changing GUI regions
on top of this screenshot. In this way, we obtain a synthetic GUI
animation for the design-don’t guideline of the original real-world
GUI animation. When synthesizing GUI animations, we randomly
apply a combination of scaling, brightness/contrast/saturation/hue
jitter, lighting augmentation, color normalization techniques to
augment the foreground GUI animations and/or the background
GUI screenshots. The goal is to increase the diversity of the syn-
thetic GUI animations and the difference between the synthetic
GUI animations and the original real-world GUI animations.

The first author reviews the synthetic GUI animations and dis-
card non-violation ones, such as those shown in Figure 5. In Figure 5
(a), a dialog is synthesized on top of a GUI screenshot that already
shows a dialog, which is unrealistic. Furthermore, that GUI already
shows the dialog over the dark background, so the synthetic GUI is
not a violation of C1 (lack of scrimmed background). Similarly, the
GUI animations in Figure 5 (b) and Figure 5 (c) do not violate C2
(invisible scrim of modal bottom sheet) and C3 (lack of shadow).
In Figure 5 (d), a snackbar appears over a text window without a
bottom app bar, so it is not a violation of C7 (snackbar block app
bar). Note that the other 5 guidelines (C4/C5/C6/C8/C9) involve
explicit component motion or interaction, which will always be
a violation when that kind of component motion or interaction
occurs. Finally, we obtain 1000 synthetic GUI animation screencasts
for each design-don’t guideline in Table 1. We use this synthetic
dataset to investigate the impact of KNN settings (RQ1) and the
ablation of model components (RQ2).

Note that due to the manual examination effort required, it is
impossible to build a large enough synthetic dataset for supervised
training of GUI animation feature extractor. Furthermore, as our
RQ4 shows, the synthetic GUI animations have latent difference
from the real-word ones, and thus the feature spaces of synthetic

Figure 5: Non-Violation Synthetic GUI Animations

and real-world GUI animation do not match. This suggest that even
we train a feature extractor using labeled synthetic GUI animations,
it will not work effectively for encoding real-world GUI animations.

4.2.3 Unlabeled Dataset of Real-Application GUI Animations. We
build a large-scale unlabeled dataset of real-application GUI anima-
tion screencasts from the GUI animation screencasts in the Rico
dataset [12], which are collected from real human-app interactions
and automatic GUI exploration. However, the duration of these
screencasts spans from 0.5 second to 50 seconds. Many screencasts
contain multiple user actions and no-action periods. We statistically
analyze these screencasts to determine the appropriate maximum
recording (5 seconds) duration and the stop-recording threshold
(1 second) for our GUI animation capturing method describe in
Section 2.1.2. We use this animation capturing method to playback
each GUI animation screencast in the Rico dataset and re-record
it into the GUI animation screencasts for individual user actions.
Finally, we obtain GUI animation 91370 screencasts for training our
GUI animation feature extractor.

4.3 Evaluation Metrics
We evaluate and compare themodel performance for GUI animation
linting by four metrics: Accuracy, Precision, Recall and F1-score.
The test data is a set of linted GUI animations that have no overlap
with the GUI animations in the search space. For one GUI guideline
classC , precision is proportion of GUI animations that are correctly
predicted as C among all GUI animations predicted as C , recall
is the proportion of GUI animations that are correctly predicted
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Table 2: Impact of KNN Settings on Synthetic Data

Accuracy F1-score
T 1NN 3NN 5NN 10NN 1NN 3NN 5NN 10NN
3 0.64 0.63 0.63 0.51 0.53 0.45 0.42 0.16
5 0.67 0.66 0.65 0.63 0.57 0.49 0.45 0.39
10 0.70 0.70 0.70 0.67 0.59 0.56 0.54 0.48
15 0.71 0.71 0.71 0.69 0.60 0.58 0.57 0.52
50 0.77 0.77 0.76 0.75 0.69 0.67 0.66 0.63
100 0.79 0.79 0.79 0.78 0.73 0.71 0.70 0.67
500 0.90 0.88 0.87 0.86 0.83 0.80 0.79 0.77

as C among all ground-truth GUI animations labeled as C , and F1-
score is computed as 2×precisionC ×recallC/(precisonC +recallC ).
Accuracy is an overall performance of the 10 guidelines, which is
computed by the number of GUI animations correctly predicted by
the model over all testing GUI animations.

5 EXPERIMENT RESULTS AND FINDINGS
We conduct extensive experiments to investigate the following four
research questions:

• RQ1. How do different KNN settings (the number of GUI anima-
tion examples in the search space and the number of k-nearest
neighbors searched) affect the classification performance?

• RQ2. How do different model components (i.e., VAE, GAN and ad-
ditional feature encoder) in our GUI animation feature extractor
affect the classification performance?

• RQ3. How well does our approach perform on linting real-world
GUI animations against design-don’t guidelines?

• RQ4. Are the latent feature space of synthetic and real-world GUI
animations different? How does the difference, if exists, affect
the cross-dataset design linting?

5.1 Impact of KNN Settings (RQ1)
5.1.1 Motivation. Our KNN search based GUI animation linting
method has two important parameters that affect the classification
accuracy and speed: 1) the number T of GUI animation examples
of a design-don’t guideline in the search space. 2) the number K
of the nearest neighbors that vote for the design-don’t guideline
violated by the linited GUI animation. The RQ1 aims to study the
impact of these two parameters on the classification performance.

5.1.2 Method. We use the synthetic dataset in this experiment
because it allows the larger scale experiments than the real-world
dataset. We experiment T={3,5,10,15,50,100,500} and K={1,3,5,10}
(i.e., 28 T -K combinations). For each guideline Ci (1 ≤ i ≤ 10), we
put T randomly selected GUI animations of Ci in the search space,
and use the rest GUI animations as the linted GUI animations. We
incrementally add more randomly sampled GUI animations to the
search space, which simulates the practical situation in which more
and more guideline-violating GUI animations are found and added
to the search space over time. We use T=500 as a stress testing to
investigate whether too many GUI animations in the search space
will disturb the performance.

5.1.3 Results. Table 23 shows the accuracy and F1-score for the
28 T -K combinations. We can see that the T=3 and 10NN setting
has the worst accuracy 0.51 and F1-score 0.16, much lower than all
other settings. This is not surprising, because only 3 GUI animation
examples for each guideline are in the search space, and considering
the 10-nearest neighbors means that there are at least 7 examples
whose design-don’t guidelines are irrelevant to the linted GUI ani-
mation. These noisy samples highly likely mislead the classification
decision, resulting in the performance drop. However, when con-
sidering less nearest neighbors (e.g., K ≤ 5) for T=3 or increasing
the number of GUI animation examples (T ≥ 5) in the search space,
the accuracy becomes very close across different K settings for a
specificT , with the slight (0.01-0.04) degradation when K increases.
F1-score has the similar trend.

Increasing T continuously improve the classification perfor-
mance, from ∼0.64 accuracy and ∼0.5 F1-score for T=3 to ∼0.79
accuracy and ∼0.7 F1-score for T=100. Having 500 GUI animation
examples per guideline in the search space does not disturb the clas-
sification decisions. Instead, it leads to a significantly performance
boost to accuracy 0.86-0.90 and F1-score 0.77-0.83 for different K
values. Although T ≥ 50 leads to better performance, it may not
be practical to collect 50 or more examples per guideline in prac-
tice. We see a trend of performance gap narrowing across K when
T increases from 3 to 100 (accuracy difference between 1NN and
10NN down from 0.13 to 0.01, and F1-score difference between 1NN
and 10NN down from 0.37 to 0.06). However, the performance gap
becomes a bit wider again when T=500. This indicates that the 10-
nearest neighbors still remain highly accurate, but become slightly
more noisy when the search space has 500 examples per guideline,
compared with less examples per guideline in the search space.
However, when T increases from 3 to 500, the average search time
increases from on average 0.53 second per linted GUI animation to
11.98 seconds. The average search time for T=10 or 15 is 1.32 and
1.88 seconds respectively.

The more GUI animation examples in the search space, the
more comprehensive the search space becomes, and the better the
classification performance is. When the search space have at least
5 examples, considering different numbers of nearest neighbors
does not significantly affect the classification performance. The
setting of 10 to 15 examples per guideline in the search space
and searching for 3 to 5 nearest neighbors can achieve a good
balance between the classification accuracy, the search time, and
the effort to collect GUI animation examples.

5.2 Model Component Ablation Study (RQ2)
5.2.1 Motivation. Our model (see Figure 3) consists of three com-
ponents: a VAE network, a GAN architecture, and an additional
feature encoder. This RQ aims to investigate the impact and synergy
of these components on the classification performance.

5.2.2 Method. We develop three variants of our model: the VAE-
only, the VAE with the GAN architecture (VAE+GAN), the VAE
plus the additional feature encoder (VAE+FE). These variants adopt
3Due to space limitation, we show the guideline-level performance results for all 28
T -K combinations in https://github.com/DehaiZhao/Seenomaly.

https://github.com/DehaiZhao/Seenomaly
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the same model configuration as our tool. We train the three vari-
ants using the same unlabeled dataset for training our tool. The
VAE-only and the VAE+GAN use only Z as the feature repre-
sentation of GUI animations, but the VAE+FE uses both Z and
Ẑ as our method does. We run these three variants on the syn-
thetic dataset in the same way as described in Section 5.1.2. That
is, each variant has 28 experiments with different T -K combina-
tions. Due to the space limitation, we report only the performance
results for T = 100 and K = 5, including the overall perfor-
mance and the guideline-level performance. Readers are referred
to https://github.com/DehaiZhao/Seenomaly for the performance
results of other T -K settings, which support the same findings as
those shown in Table 3.

5.2.3 Result. Table 3 shows the precision, recall and F1-score for
each guideline, as well as the average precision, recall, F1-score
and the overall accuracy over all guidelines. The VAE network, as
the core component of our unsupervised GUI animation feature
extractor, already sets a very good performance baseline, with av-
erage precision 0.76, recall 0.64, F1-score 0.66, and overall accuracy
0.76. Just adding adversarial training through the GAN architec-
ture or adding the additional feature encoder for extracting more
abstract features do not affect the overall performance, but we see
some variations in the guideline-level performance across VAE-
only, VAE+GAN and VAE+FE. VAE+GAN and VAE+FE have a more
balanced precision and recall than VAE-only. When combining the
VAE with both the GAN architecture and the additional feature
encoder (i.e., our model in Figure 3), we obtain better average F1-
score and overall accuracy than VAE-only, with a more balanced
average precision and recall than VAE-only. At guideline-level, our
model achieve better F1-score (0.04-0.15) for 7 guidelines and worse
F1-score (0.01-0.05) for 3 guidelines than VAE-only.

Looking into the guideline-level performance, our model per-
forms the best for the guideline C4 (pass through other material)
(F1-score 0.91) and C6 (flip card to reveal information) (F1-score
0.90). GUI animations related to these two guidelines involve salient
component motion features, which are well learned by our model
to classify these two types of GUI animations. However, our model
does not perform sowell for C5 (move one card behind other card(s))
(F1-score 0.68), which is also a componentmotion guideline. Moving
one card among many others usually involve much more complex
and diverse simultaneous multiple card animations, compared with
the single component animation for C4 and C6.

Our model also perform very well for classifying normal GUI
animations (C10) (F1-score 0.88). This indicates that although our
model is trained in an unsupervisedway, it can verywell capture the
data distribution differences between normal GUI animations and
those with design violations. As a result, normal GUI animations
are well separated from abnormal ones in the search space.

Our model performs much better for C2 (invisible scrim for
modal bottom sheet) (F1-score 0.96) than C1 (lack of scrimmed
background) (F1-score 0.68). Although both C2 and C4 are about
scrimmed background, the modal bottom sheet in C2 appears gradu-
ally from the bottom of the screen, from which our model can learn
much richer temporal-spatial features to recognize the animation
of modal bottom sheet, than the instantaneous dialog popup in C1.

Figure 6: Incorrectly Classified GUI Animations (Green: La-
beled Guideline, Red: Predicted Guideline)

Our model performs reasonably well for C9 (stack multiple ban-
ners) (F1-score 0.70), but it performs not so well for another similar
GUI animation (C8 stack multiple snackbars). For C8, the preci-
sion is still good (0.83), but the model misses many cases (recall
only 0.42). Our analysis reveals that the appearing/disappearing
of multiple snackbars or banners usually involves longer anima-
tion. Our animation capturing method (see Section 2.1) may drop
some important animation frames of snackbar or banner appear-
ing/disappearing. As a result, our model does not learn very well
the complete features of the appearing/disappearing of multiple
snackbars or banners. However, as banners are larger and contain
more information and GUI components than snackbars, the model
learns richer features to better classifying C9-related GUI animation
than C8-related GUI animations. We will refine our GUI animation
capturing method to handle long GUI animations more properly.

Our model perform poorly for another snackbar-related GUI
animation (C7 snackbar blocks app bar) (F1-score only 0.31), as
well as for C3 (lack of shadow) (F1-score only 0.32). Figure 6 shows
typical examples that make the classification of these two guidelines
very challenging. For C7, the classification becomes challenging
when snackbars and app bar or background GUIs have very similar
visual features, e.g., Figure 6 (a)/(b). In such cases, a C7-violating
GUI animationmay be classified as normal (C10). Another challenge
in classifying C7 is that the model may erroneously recognize non-
app-bar components as app bars. For example, a snackbar appears
in front of a button in Figure 6 (c) and an image in Figure 6 (d),
which are a normal animation (C10), but our model misclassifies
them as C7. For C3, the key challenge lies in the fact that the
shadow animation has only very minor screen changes. As such,
the model may misclassify a normal menu with shadow as C3 (e.g.,
Figure 6 (e)) or misclassify a menu lack of shadow as C10 (e.g.,
Figure 6 (f)/(g)/(h)). These issues could be addressed by separating
foreground animations from background GUI screenshots and then

https://github.com/DehaiZhao/Seenomaly
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Table 3: Overall and Guideline-Level Performance of the Three Variants and Our Method for T=100 and K=5

VAE-Only VAE+GAN VAE+FE Our method
Guideline Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1

C1 0.55 0.52 0.53 0.82 0.98 0.90 0.62 0.57 0.59 0.67 0.69 0.68
C2 0.87 0.99 0.92 0.89 0.94 0.92 0.83 0.98 0.90 0.94 0.98 0.96
C3 0.83 0.13 0.23 0.75 0.31 0.44 0.45 0.29 0.35 0.56 0.23 0.32
C4 0.89 0.99 0.94 0.82 0.98 0.82 0.76 0.99 0.86 0.85 0.99 0.91
C5 0.80 0.67 0.73 0.76 0.72 0.74 0.62 0.66 0.64 0.67 0.69 0.68
C6 0.89 0.92 0.91 0.92 0.96 0.94 0.75 0.97 0.84 0.85 0.97 0.90
C7 0.27 0.41 0.33 0.30 0.19 0.23 0.33 0.25 0.29 0.29 0.34 0.31
C8 0.85 0.38 0.52 0.62 0.33 0.43 0.76 0.49 0.60 0.83 0.42 0.56
C9 0.85 0.52 0.65 0.63 0.43 0.51 0.79 0.53 0.64 0.75 0.65 0.70
C10 0.81 0.91 0.86 0.76 0.89 0.82 0.84 0.89 0.86 0.85 0.91 0.88

Average 0.76 0.64 0.66 0.71 0.63 0.65 0.68 0.66 0.66 0.72 0.69 0.70
Accuracy 0.76 0.75 0.75 0.79

Table 4: Impact of KNN Setting on Real-World Data

Accuracy F1-score
T 1NN 3NN 5NN 10NN 1NN 3NN 5NN 10NN
3 0.64 0.64 0.57 0.43 0.64 0.61 0.64 0.38
5 0.74 0.71 0.70 0.54 0.72 0.66 0.65 0.37
10 0.84 0.80 0.77 0.71 0.83 0.77 0.74 0.63
15 0.87 0.84 0.79 0.74 0.84 0.83 0.77 0.68

encoding them separately, rather than encoding them as a whole
in our current model. We leave this as our future work.

Our model can learn distinctive temporal-spatial features
from real-application GUI animations in an unsupervised man-
ner, based on which it can accurately lint GUI animations
against a wide range of design-don’t guideline involving very
diverse animation effects, screen positions and GUI compo-
nents. Our model currently has limitations on simultaneous
multiple component animations and instantaneous component
animations, but GUI animations with small screen changes
or overlapping components with similar visual features is the
most challenging GUI animations to classify.

5.3 Performance of Real GUI Linting (RQ3)
5.3.1 Motivation. Although synthetic data supports large-scale
experiments in RQ1 and RQ2, it may have latent difference from
real-world GUI animations, which may not be visually observable.
Therefore, even though our model performs very well on synthetic
data, we still need to test our model’s capability of linting real-world
GUI animations against design-don’t guidelines.

5.3.2 Method. We use the same experiment method described in
Section 5.1.2 for the experiments on the real-world dataset. We
still experiment K={1,3,5,10}, but as the real-world dataset has
only 25 GUI animations for each guideline, we experiment only
T={3,5,10,15}. So we have in total 16 T -K combinations in RQ3. We
put at most 15 GUI animations per guideline in the search space,

Figure 7: Correctly Classified GUI Animations
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Table 5: Performance in the Real→ Synthetic Context

Accuracy F1-score
T 1NN 3NN 5NN 10NN 1NN 3NN 5NN 10NN
3 0.33 0.37 0.35 0.44 0.33 0.34 0.33 0.35
5 0.32 0.37 0.40 0.32 0.31 0.33 0.36 0.30
10 0.43 0.39 0.35 0.36 0.35 0.34 0.32 0.34
15 0.41 0.34 0.37 0.36 0.35 0.34 0.32 0.35

and this will leave us at least 10 GUI animations as the linted GUI
animations. In addition to computing various evaluation metrics,
we also manually examine the linting results, which is feasible as
the real-world dataset is small, to understand the learning capability
of our model qualitatively.

5.3.3 Result. Table 4 shows the accuracy and F1-score of for the 16
T -K combinations on the real-world dataset. We can make similar
observations as those discussed in Section 5.1.3, in terms of the
impact of different KNN settings on the model performance. The
performance of our model on real-world data is generally better
than that on synthetic data in the same T -K setting. This could be
because the number of linted GUI animations is much smaller. How-
ever, as we try to maximize the distinction of the GUI animations
(see examples in Figure 7) when building the real-world dataset,
this performance results should not be because the linted GUI an-
imations are too similar. Compared with the results on synthetic
data, K value has larger impact on the performance for real-world
data, especially when T is small and K is large.

Figure 7 shows some examples that our model classifies correctly.
First, we can see that both the animated components and the back-
ground GUIs are very diverse in their content and visual/spatial
features. In face of such data diversity, our model can still correctly
classify them. Second, the linted GUI animations do not have to
be similar to the GUI animation examples in the search space at
the fine-grained design level (compare the examples (a)/(b) with
the flipping-card example and compare the examples (e)-(h) with
the model bottom sheet example in Figure 1) Third, our model has
certain level of generalizability. For example, the example (n) shows
a modal side sheet over a scrimmed background. Although it looks
like a side menu without shadow (C3), our model correctly classifies
it as normal. The examples (o) and (p) involve moving map and
scrolling text, respectively. Our model also correctly classifies them
as normal, which means that our model can place them at very
different locations from those guideline-violating GUI animations.

Our approach can accurately lint real-world GUI animations
against a set of diverse design-don’t guidelines, because it can
learn abstract temporal-spatial features from GUI animations
and ignore fine-grained GUI design differences.

5.4 Cross-Dataset Design Linting (RQ4)
5.4.1 Motivation. We observe the performance difference between
linting the real-world GUI animations (Table 4) and linting the
synthetic GUI animations (Table 2). We hypothesize that the la-
tent feature space of real-world GUI animations and synthetic GUI

Table 6: Performance in the Synthetic→ Real Context

Accuracy F1-score
T 1NN 3NN 5NN 10NN 1NN 3NN 5NN 10NN
3 0.24 0.31 0.33 0.54 0.28 0.29 0.33 0.39
5 0.33 0.41 0.32 0.39 0.33 0.37 0.32 0.35
10 0.28 0.32 0.32 0.37 0.30 0.31 0.31 0.34
15 0.29 0.34 0.34 0.33 0.33 0.33 0.33 0.33

animations has significant difference. We conduct cross-dataset
design-linting experiments to validate this hypothesis.

5.4.2 Method. We use the same experiment method described in
Section 5.3.2. That is, we experiment 16T -K combinations:T={3,5,10,
15} and K={1,3,5,10}. In RQ4, we take GUI animations in one dataset
as the examples in the search space and those in the other dataset as
the linted GUI animations. We refer to this context as cross-dataset
design linting, as opposed to within-dataset design linting in RQ1,
RQ2 and RQ3. We have two cross-dataset contexts, denoted as real
→ synthetic and synthetic→ real.

5.4.3 Results. Table 5 and Table 6 show the accuracy and F1-score
for the 16 T -K combinations in the real → synthetic and synthetic
→ real contexts. First, we can see that the performance in both
cross-dataset design linting contexts is significantly worse than that
in within-dataset design linting (see Table 2 and Table 4). Second,
we do not see the continuous performance improvement when
T increases as in the two within-dataset contexts. The impact of
increasing the number of GUI animation examples in the search
space on the performance seems rather random. This indicates that
the similar GUI animation examples are not consistently mapped
to the close locations in the search space. Third, in the context of
within-dataset linting, increasing K generally leads to performance
degradation, which indicates that the most similar GUI animation
examples appear at the top of k-nearest neighbors. So a larger K
tends to include more irrelevant examples. In contrast, we observe
the opposite results in cross-data contexts. In fact, theT=3 andK=10
setting in the two cross-dataset contexts has the best performance
among all the T -K combinations, which is the exact opposite to
the results in the within-dataset contexts. This indicates that the
actually-relevant GUI animation examples are not the closest ones
to the linted GUI animations in the search space. They can only be
included when considering more k-nearest neighbors.

Although synthetic GUI animations are constructed using the
cropped real-world GUI animations and real-application GUI screen-
shots, the combination of both in synthetic GUI animations may
have latent “unrealistic” features which may not be visually observ-
able by human inspector, for example, incompatible color systems,
typography or shape. To our feature extractor which is trained from
the real-application GUI animations, such latent unrealistic features
would make synthetic GUI animations look like “anomalies” to the
real-world GUI animations. The reasonably good performance in
the within-synthetic context (see Section 5.1.3) shows that our fea-
ture extractor can consistently map those anomalies in the search
space, so that relevant anomalies are still close to one another. How-
ever, as anomalies to the feature extractor, synthetic GUI animations
would be mapped into very different locations in the feature space
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from the relevant real-world GUI animations, which results in very
poor cross-dataset linting performance.

The feature space of synthetic GUI animations is very dif-
ferent from that of real-world GUI animations. Therefore, it is
unrealistic to perform cross-dataset design linting. A feature
extractor trained using synthetic GUI animations would not
be effective in encoding real-world GUI animations.

6 RELATEDWORK
Our work proposes a novel software linting problem. Lint, or a
linter, is a static analysis tool that flags programming errors, bugs,
stylistic errors, and suspicious constructs. The term originates from
a Unix utility that examines C language source code. Nowadays, all
major programming languages and platforms have corresponding
lint tools. For example, Android Lint [1] reports over 260 different
types of Android bugs, including correctness, performance, security,
usability and accessibility. StyleLint [2] helps developers avoid
errors and enforce conventions in styles. All such lint tools rely
on human-engineered rules. Although such rules could be defined
for some static GUI visual effects (e.g., too small font, too large
gap, too dark background, lack of accessibility information), it is
not straightforward to define rules for GUI animations involving
complex component motion, interaction, appearing or disappearing.
Furthermore, the complexity of style and theme systems in modern
GUI frameworks makes it very difficult to precisely determine the
actual GUI effects by static programming analysis.

Different from static linting, automatic GUI testing [4, 22, 30]
dynamically explore GUIs of an application. Several surveys [18, 38]
compare different tools for GUI testing for Android applications.
Unlike traditional GUI testing which explores the GUIs by dynamic
program analysis, these two techniques use computer vision tech-
niques to detect GUI components on the screen to determine next
actions. These GUI testing techniques focus on functional testing,
and they are evaluated against code or GUI coverage. In contrast,
our work lints GUI animations obtained at runtime against design-
don’t guidelines.

Recently, deep learning based techniques [11, 36] have been
proposed for automatic GUI testing. In addition to GUI testing, deep
learning has also been used for UI-design-to-code transformation [6,
23], phishing app generation [9, 10, 32], app localization [35] and
app accessibility [7]. Zhao et al. [39] proposes a deep learning
based method for extracting programming actions from screencasts.
The goal of our work is completely different from these works.
Furthermore, they all use supervised deep learning techniques,
which requires large amount of labeled data for model training.
In contrast, our work deals with a novel problem with only small-
scale labeled data, and our work is the first to use unsupervised
representation learning for GUI-related linting problem.

Our approach is inspired by deep learning based action recogni-
tion [15, 28, 33, 34]. In particular, we adopt the 3D-CNN [33] as our
basic feature extractor. These methods performs well on natural
scene videos (e.g. human action recognition), which have very dif-
ferent environment from our work (screencasts of GUI animations).
In addition, these models are trained via supervised learning. As the

first work of its kind, our work is fundamentally limited by labeled
data, we motivate us to adopt unsupervised learning method to
solve our linting problem. Our model is also inspired by anomaly
detection with unsupervised learning [3, 17, 20, 21, 27]. As reviewed
in [17], adversarial learning [20] is suitable for detecting anomaly
data from videos, which is similar to our goal. The difference is that
anomaly detection is a binary classification task (normal or abnor-
mal), while our task is a multi-class classification, which is a much
harder task for unsupervised representation learning. We connect
an additional feature encoder with the GAN to satisfy the need of
extracting abstract animation features while ignoring fine-grained
GUI details for our specific GUI linting problem.

7 CONCLUSION
This paper investigates a novel software linting problem - lint GUI
animations against design-don’t guidelines. We innovatively solve
the problem using multi-class GUI animation classification. In ab-
sence of sufficient labeled data for training the classifier, we design
a novel adversarial autoencoder for unsupervised representation
learning of GUI animations. From a large amount of unlabeled
GUI animations that are automatically collected from real applica-
tions, our model learns to extract abstract temporal-spatial feature
representations from GUI animations with different fine-grained
GUI content and visual effects, based on which a simple k-nearest
neighbor search can accurately “see” the anomaly of an unseen
GUI animations against a small number of (5-15) GUI animation
examples of design-don’t guidelines for a wide range of animation
effects, screen positions and GUI components. As the first work of
its kind, we also contribute two labeled and one unlabeled datasets
for future research, and unveil the challenges that deserve further
research in this novel software linting problem.
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