
ActionNet: Vision-based Workflow Action
Recognition From Programming Screencasts

Dehai Zhao, Zhenchang Xing
Research School of Computer Science

Australian National University
Australia

{dehai.zhao, zhenchang.xing}@anu.edu.au

Chunyang Chen∗, Xin Xia∗

Faculty of Information Technology
Monash University

Australia
{chunyang.chen, Xin.Xia}@monash.edu

Guoqiang Li∗

School of Software
Shanghai Jiao Tong

University, Shanghai,China
li.g@sjtu.edu.cn

Abstract—Programming screencasts have two important ap-
plications in software engineering context: study developer be-
haviors, information needs and disseminate software engineering
knowledge. Although programming screencasts are easy to pro-
duce, they are not easy to analyze or index due to the image
nature of the data. Existing techniques extract only content from
screencasts, but ignore workflow actions by which developers
accomplish programming tasks. This significantly limits the
effective use of programming screencasts in downstream applica-
tions. In this paper, we are the first to present a novel technique
for recognizing workflow actions in programming screencasts.
Our technique exploits image differencing and Convolutional
Neural Network (CNN) to analyze the correspondence and
change of consecutive frames, based on which nine classes of
frequent developer actions can be recognized from programming
screencasts. Using programming screencasts from Youtube, we
evaluate different configurations of our CNN model and the per-
formance of our technique for developer action recognition across
developers, working environments and programming languages.
Using screencasts of developers’ real work, we demonstrate the
usefulness of our technique in a practical application for action-
aware extraction of key-code frames in developers’ work.

Keywords—Programming Screencast; Action Recognition;
Deep learning

I. INTRODUCTION

Screencasting is a technique to record computer screen
output at a specific time interval (e.g., 1/15 second). In the
context of software engineering, programming screencasts pro-
vide a direct record of both a developer’s workflow actions and
the application content involved in programming tasks (e.g.,
typing code, scrolling content, switching windows) . They not
only provide the data basis to study developer behaviors and
information needs in software engineering research [1]–[6],
but they are also a common content carrier for disseminating
software engineering knowledge [7], [8].

In the application of studying developers, programming
screencasts provide direct observational data, as opposed to
survey and interview data that rely on self-reporting [9], [10].
According to a recent survey of data collection methods used
in the 26 papers that study developer behaviors [11], 21 of
these papers rely on programming screencasts to study a wide
range of software engineering activities, such as feature loca-
tion [1], debugging [12], [13], program comprehension [14]–

*Corresponding author

[16], tool design [6], [17], and distributed programming [18].
In the application of disseminating software engineering kno-
wledge, programming screencasts offer live-coding experience
which is absent in text-based tutorials. Millions of program-
ming tutorials are published on Youtube and are watched by
millions of developers. Seeing a developer’s coding in action,
for example, how changes are made to source code step by
step and how errors occur and are fixed, can be more valuable
than text-based tutorials [8].

As all operating systems provide a simple API to record
computer screen, screencasting does not need application-
specific support which makes it very easy to deploy, compa-
red with software instrumentation that requires sophisticated
accessibility or UI automation APIs [5], [19], [20]. However,
this easy-to-deploy convenience comes with a high-barrier of
video analytics. As a screencast is a sequence of screen-
captured images, one cannot study the developer behaviors
or harness the programming knowledge in the screencast until
the workflow actions and the application content captured in
the screencast can be effectively extracted [4], [8], [11], [21].

It is very time-consuming to manually identify the workflow
actions and the application content in a screencast [11].
This limits the scalability of behavioral research on software
developers. Existing automatic techniques [11], [21] focus on
only the content extraction from screencasts using Optical
Character Recognition (OCR) techniques [22], but ignore the
workflow actions, i.e., actions that the developer takes to
accomplish programming tasks. Ignoring the workflow actions
makes programming screencasts less valuable in studying de-
veloper behaviors, because we lose the dynamic aspects of the
developer’s coding practice. For example, we cannot see what
actions lead to program errors and how the developers fix the
errors, or what is the bottleneck for code search. Ignoring the
workflow actions in programming video tutorials also limits
the ways that developers can search and navigate the video
tutorials, resulting in less effective learning experience [8].

In fact, extracting content without considering workflow
actions itself is problematic, resulting in noisy extracted con-
tent that will negatively affect the effective use of program-
ming screencasts in studying developer behaviors or learning
programming knowledge. For example, as shown in the frames
fx and fx+1 in Fig. 1, while the developer is typing the



code, a popup window appears to suggest APIs. This popup
window makes the current screenshot very different from
the previous screenshot and existing frame-similarity based
methods [11], [21] will select fx+1 for content extraction.
First, the popup window likely contains APIs irrelevant to the
developer’s current code. Second, it blocks the actual code
in the main window. Third, the content in the popup window
mixed together with the main window content will degrade the
OCR quality. As another example, the developer selects a piece
of code (see the frames fy and fy+1 in Fig. 1). This also results
in enough screen changes which again triggers the content
extraction by frame-similarity based methods. The selected
code has different background and foreground color from
other code, which will degrade the OCR quality. However, the
code does not actually change which means that the content
extraction for fy+1 is completely unnecessary.

To overcome the limitation of the content-centric analysis of
programming screencasts, this paper presents a deep learning
based computer vision technique to automatically recognize
developer actions from programming screencasts. In this work,
we focus on three categories of nine actions (see Table I)
frequently observed in programming work. We do not limit
the action occurrences in only IDEs, as programming work
may involve many other software tools (e.g., web browser,
interactive shell). Our approach first uses image differencing
techniques to detect the change regions between the two
consecutive frames, resulting from developer actions. The de-
tected change regions are then fed into a Convolutional Neural
Network (CNN) model to extract abstract image features,
which will then be fed into a softmax classifier to predict
the action that most likely causes the screen changes.

We collect 50 programming screencasts (25 for Python and
25 for Java) from the 10 popular programming playlists on
Youtube. These 10 playlists are produced by 10 different
developers and use different development tools. Through intra-
playlist, inter-playlist and inter-programming-language experi-
ments, we show that our approach can be effectively trained
and deployed in very diverse working environment and pro-
gramming language settings (F1-score>0.7), on par with the
accuracy of popular human action recognition techniques [23]–
[25]. We further collect 10 hours of screencasts of two
developers’ real work and ask the developers to identify key-
code frames in the screencasts. We demonstrate that action-
aware extraction of key-code frames identifies key-code frames
that correspond to the developers’ annotations much better
than existing action-agnostic methods.

We make the following contribution in this paper:

• To the best of our knowledge, this is the first work to re-
cognize workflow actions from programming screencasts.
We extract finer-grained workflow actions than previous
work on the manual analysis of developer behaviors.

• To extract workflow actions, we propose a two-stage deep
learning based method. It first detects screen changes by
image differencing, and then recognizes developer actions
from screen changes with a CNN-based model.

TABLE I
THE CATEGORY OF ACTIONS TO BE RECOGNIZED IN THIS WORK

General Category ID Description

Control
cursor/mouse

C1 Move cursor by keyboard
C2 Move mouse over text region
C3 Move mouse over non-text region

Edit content C4 Enter text (e.g., char, word, paragraph)
C5 Delete text (e.g., char, word, paragraph)

Interact with app

C6 Trigger popups (e.g., menu, tooltip)
C7 Scroll text (e.g., code, console output)
C8 Select text (e.g, code, console output)
C9 Switch window (within or across app)
C10 Others (e.g., resize window, click button)

• Through extensive experiments, we not only confirm
the effectiveness and generality of our method, but also
demonstrate its usefulness for action-aware extraction of
key-code frames in programming screencasts which can
enable more accurate code extraction or video search.

II. PROBLEM STATEMENT

A programming screencast is a sequence of time-stamped
screenshots (i.e., computer screen outputs) recorded at a speci-
fic time interval while the developer is working on a computer.
Each screenshot is a screen image and is referred to as a
frame in the screencast. The interaction between the developer
and the development tools during screencasting results in the
visual changes on the computer screen over time, for example,
typing a char results in the typed char appearing on the screen,
selecting a word results in the change of the foreground and
background color of the selected word.

When people watch the screencast, they can manually
recognize a sequence of developer actions from the screen
changes in consecutive frames. The goal of this work is to
develop a computer-vision based technique to automate the
recognition of developer actions in programming screencasts.
As illustrated in Fig. 1, our technique (ActionNet) takes as
input a sequence of frames in a programming screencast, and
automatically produces as output a sequence of actions that
the developer performs on the computer during screencasting.

Developer actions can be at various levels of abstraction [4].
For example, an “edit file” activity can comprise primitive
actions such as “enter text”, “select text”, “delete text”, “scroll
text”. A “browse web” activity can comprise primitive actions
such as “enter query”, “scroll web page”, “select web page
content”. A “debug code” activity can comprise primitive
actions such as “scroll code”, “switch file”. Although high-
level activities differ greatly in goals and software involved,
they share primitive actions in the process of human-computer
interaction. In this work, we decide to recognize primitive
actions in programming screencasts. The primitive actions
can be aggregated into high-level activities by rule-based or
machine learning techniques [4], [8].

We define nine classes of developer actions to be recognized
in programming screencasts, based on our own programming
experiences, the survey of HCI literature [5], [26], [27], and
the empirical coding of frequent primitive actions in the
10 randomly selected programming screencasts on Youtube.
These nine classes of primitive actions are frequent actions in



Fig. 1. An Illustration of Workflow Action Recognition in Programming Screencasts

programming work and they fall into three general categories
(see Table I). These primitive actions can occur in IDEs,
interactive shell, web browsers and text editors that are com-
monly used in software development. Except for mouse and
cursor actions that can be instrumented using simple operating-
system level APIs, instrumenting other classes of actions will
require accessibility or UI automation APIs [5], [11]

We classify all other less frequent HCI actions (e.g., resize
window, click button) as an “others” class (C10). Note that
we do not consider “no action” class, because “no action”
can be easily determined when the consecutive frames remain
unchanged by image differencing (see Section III-A). As
a programming screencast often contains many “no action”
periods, considering “no action” class will superficially inflate
the model performance but has no practical meaning.

Recognizing developer actions on computer in a program-
ming screencast differs significantly from recognizing human
actions in a natural scene video. Human actions in a natural
scene, such as press key, move mouse, have a physical
duration, and they cause changes in at least several frames.
In contrast, the computer screen changes resulting from the
developer actions on computer are computer rendered, and
they happen instantly from one frame to next. Therefore, we
must be able to recognize developer actions with only the
information in two consecutive frames.

We formulate our task as a multi-class classification pro-
blem which predicts the probability of the above 10 classes
primitive actions (including “others”) given the two consecu-
tive frames in a programming screencast.

III. APPROACH

Fig. 2 presents the main steps of our approach. Given a
screencast with N frames, our approach analyzes the two
consecutive frames fi and fi+1 (1 ≤ i < N ) sequentially from
the beginning to the end of the screencast. First, it uses image
differencing technique to detect the largest change region
diff i+1

i in between the two frames fi and fi+1. Then, it crops
the screen region Ri@diff i+1

i and Ri+1@diff i+1
i on fi and

fi+1 respectively with respect to diff i+1
i . Next, the cropped

screen regions are fed into a CNN-based feature extractor that
is trained to extract image features of the correspondence and
change between the two cropped screen regions. Finally, based
on the extracted image features, a softmax classifier is trained
to predict the probability of the 10 classes of primitive actions
(including “others”) that most likely cause the screen changes
from fi to fi+1.

A. Change Region Detection by Image Differencing

A naive solution to our problem would be to predict
developer actions directly from the two consecutive frames.
However, this solution will not be effective, because many
developer actions, such as typing a char or moving the mouse
pointer, result in very small screen changes, compared with the
size of the whole screen. If we take the whole frames as input,
the important features in small screen changes would be too
weak to recognize the corresponding developer actions. This
is especially the case when extracting image features using
deep neural network [28]. Therefore, we decide to detect the
change regions between the two frames and then use these
change regions for action recognition.

We adopt the mature computer vision technique that is wi-
dely used to detect change regions between two frames [29]–
[31]. Specifically, we use scikit-image APIs [32] to detect
change regions in the two frames fi and fi+1. As illustrated
in Fig. 3, we first compute the structural similarity index
between the same-position pixels of the two frames. Structural
similarity compares local patterns of pixel intensities that have
been normalized for luminance and contrast. Based on the
pixel structural similarities, a black and white image can be
obtained in which white means the same pixels and black
means the different pixels between the two frames. We find
the bounding boxes of the black pixels which identify the
change regions between the two frames. We then crop the
screen regions on fi and fi+1 with respect to the identified
change regions.

One technical challenge in using change regions for action
recognition is that there can be more than one change regions
between two frames. For example, the screencast may record
system clock update in addition to the screen changes resulting
from developer actions. Furthermore, one developer action
may result in several screen changes. For example, entering a
word results in a direct screen change (the word appears), but
may also result in indirect screen changes (e.g., a code assist
icon appears on the editor ruler).

To identify change regions directly related to developer
actions, we use two simple filters observed during our manual
labelling of developer actions in programming screencasts (see
Section IV-B). First, we observe that the minimum change
regions related to developer actions resulting from cursor
movement are always of 5 by 16 pixels. Therefore, we discard
any change regions smaller than 5 by 16 pixels. Second,
we observe that as a response to human actions, screen



Fig. 2. An Overview of the Main Steps of Our ActionNet

fi

fi+1

fi

fi+1

Binary difference image

Compute Image 
Similarity

Crop change 
regions

𝑑𝑖𝑓𝑓𝑖
𝑖+1

 

𝑅𝑖@𝑑𝑖𝑓𝑓𝑖
𝑖+1

 

𝑅𝑖+1@𝑑𝑖𝑓𝑓𝑖
𝑖+1

 

Fig. 3. Steps to Detect Changes Regions in Between fi and fi+1

changes directly related to developer actions will be the largest
changes. Therefore, we keep only the largest change region
between fi and fi+1. We refer to this largest change region as
diff i+1

i , and the screen regions on fi and fi+1 with respect
to diff i+1

i as Ri@diff i+1
i and Ri+1@diff i+1

i , respectively.

B. Change Region Feature Extraction by Vision CNN

To predict actions from screen changes, we must be able to
identify the correspondence and contrast features from screen
changes. In this work, we consider 10 classes of developer
actions. The screen changes resulting from these actions have
intra-class variations. For example, entering text can be either
typing a char or pasting a paragraph of text. The background
and foreground color changes resulting from text selection
may differ from one application to another. Meanwhile, we
have inter-class similarities. For example, switching window,
scrolling text and triggering popups may look alike in term
of large screen content changes. Finally, we have working
environment variations across developers. Some developers
use IDEs, some use text editors, and others use the interactive
console. Even for the same tool, different developers may use
different color themes, font size, etc.

All these variations make manual feature engineering for
action recognition in programming screencasts infeasible. In-
spired by the success of CNN for computer vision tasks, we
design CNN-based feature extractors that automatically learn
to extract effective image features from training data without
the need for manual feature engineering.

1) Input Change Regions to CNN: For the CNN to extract
effective features for action recognition, we must provide it
sufficient information about screen changes resulting from
developer actions. We adopt three strategies to produce the
input screen change regions to CNN.

The first strategy (change-contrast) uses Ri@diff i+1
i on fi

and Ri+1@diff i+1
i on fi+1 with respect to the largest change

region diff i+1
i . This strategy contrasts the corresponding

largest change region Ri@diff i+1
i and Ri+1@diff i+1

i on fi
and fi+1 respectively to recognize developer actions.

The second strategy (action-continuity) uses Ri@diff i
i−1

on fi with respect to diff i
i−1 between fi−1 and fi and

Ri+1@diff i+1
i on fi+1 with respect to diff i+1

i between fi
and fi+1. This strategy leverages the fact that developer acti-
ons have continuity, for example, typing a sequence of chars,
scrolling text continually. Therefore, it considers both the
screen change Ri@diff i

i−1 on fi resulting from the previous
action and the screen change Ri+1@diff i+1

i on fi+1 resulting
from the current action. However, the second strategy does not
consider Ri@diff i+1

i (the contrast of Ri+1@diff i+1
i ) on fi.

The third strategy (change-contrast⊕action-continuity) is
a combination of the first and the second strategies. First,
based on the corner positions of Ri@diff i

i−1 on fi and
Ri+1@diff i+1

i on fi+1, we determine the least screen region
BRi+1

i on fi and fi+1 respectively that can include both
Ri@diff i

i−1 on fi and Ri+1@diff i+1
i on fi+1. This screen

region BRi+1
i on fi will also include Ri@diff i+1

i on fi (the
contrast of Ri+1@diff i+1

i ). In addition, it may include some
screen regions that are the same between fi and fi+1, which
may provide additional context for action recognition.

Fig. 4 illustrates these three strategies. Assume the develo-
per starts with the code in f1, she types a “.” which is recorded
in f2, and this action further triggers a “code completion popup
window” recorded in f3. We box R1@diff2

1 on f1, R2@diff2
1

on f2, R2@diff3
2 on f2, R3@diff3

2 on f3, BR3
2 on f2 and

f3. To recognize the “trigger popup” action from f2 to f3,
the strategy-1 uses R2@diff3

2 on f2 and R3@diff3
2 on f3 as

input change regions. The strategy-2 uses R2@diff2
1 on f2

and R3@diff3
2 on f3 as input. Note that although R2@diff2

1

is determined by the change region diff2
1 between f1 and f2,

we do not use any screen information from f1. The strategy-3
uses BR3

2 on f2 and f3 as input.
Note that the strategy-2 may take two screen regions of very

different size. As CNN requires the input images to be of the
same size, we have to resize the input change regions to the
same size. However, in the situation illustrated in the strategy-
2, resizing the two input change regions to the same size will
distort the small-size image. In contrast, the strategy-3 does
not suffer from this issue. As the two input change regions
are of the same size, resizing will result in the same level of
scaling of images.

2) CNN Architectures: Our model is based on Inception
ResNet V2 [33], which combines the advantages of Micro-
soft’s ResNet [34] and Inception architecture [35]. Each input
change region is an image I ∈ RWHD where W and H are
the width and height of the image, and D = 3 for RGB color
image (i.e., the red, green, blue channel respectively). Given
the two change regions, we develop two architectures to extract
image features. As shown in Fig. 5, early fusion architecture
first concatenates the two change regions into a 6-channel
input volume, which is fed into a single CNN to extract image



Strategy-1 Strategy-2 Strategy-3

𝑅1@𝑑𝑖𝑓𝑓2
3 

𝑅2@𝑑𝑖𝑓𝑓2
3 

𝑅2@𝑑𝑖𝑓𝑓1
2 

𝑅2@𝑑𝑖𝑓𝑓2
3 

f1

𝑅1@𝑑𝑖𝑓𝑓1
2 

f2
𝑅2@𝑑𝑖𝑓𝑓1

2 

𝑅1@𝑑𝑖𝑓𝑓2
3 

f3

𝑅2@𝑑𝑖𝑓𝑓2
3 

𝐵𝑅2
3@𝑓2 

𝐵𝑅2
3@𝑓3 

𝐵𝑅2
3@𝑓2 

𝐵𝑅2
3@𝑓2 𝐵𝑅2

3@𝑓3 

Fig. 4. Illustration of Three Strategies for Input Change Regions

features. In contrast, late fusion architecture feeds each input
region into a CNN separately and then concatenate the output
feature vector of the two CNNs. It adopts a Siamese network
architecture [36] in which the two CNNs share the weights.

Ri Ri+1 Ri Ri+1

Late fusion model Early fusion model

CNN

Feature 
Vector

Softmax

Fig. 5. Early Fusion versus Late Fusion Architecture

C. Action Recognition by Multi-Class Classification

Given the image feature vector S extracted by the CNN,
we train a softmax classifier to predict the developer action
that most likely causes the screen change from fi to fi+1.
Specifically, the softmax classifier predicts the probability
distribution ŷ over the 10 class labels as defined in Section II,
i.e., ŷ = softmax(WS + b), where ŷ ∈ R10 is the vector
of prediction probabilities over the 10 class labels, and W
and b are the learnable parameters of the classifier. The CNN
model and the softmax classifier is training by minimizing the
cross-entropy loss of the predicted labels and the ground-truth
labels: L(ŷ, y) = −

∑
1≤i≤M

∑
1≤j≤10(yij log(ŷij) where M

is the number of training samples, yij is the ground-truth label
for the jth class (1 for the ground-truth class, 0 otherwise) for
the ith training example, and ŷij is the predicted probability
of the jth class for the ith training example.

IV. EVALUATION OF MODEL PERFORMANCE

We collect programming screencasts from Youtube to in-
vestigate the following three research questions:

• RQ1: How do the alternative designs of the vision CNN
affect the model performance for action recognition?

• RQ2: How well do our action recognition model perform
when training and testing across different developers, wor-
king environments and programming languages?

• RQ3: What is the runtime performance of our model?

A. The Dataset of Programming Screencasts on Youtube

In this study, we consider two programming languages:
Python and Java. To prepare data, we use Youtube Data
API [37] to search “java tutorial” and “python tutorial” on
Youtube. We retrieve the top 50 returned playlists for Python
and Java respectively. From these candidate playlists, we select
5 playlists for each language in which the video authors are
programming in the screencasts. The authors of the selected
10 playlists are all different. We use Youtube-dl API [38]
to download all the screencasts at High Definition resolution
in these 10 selected playlists. Finally, we randomly select 5
screencasts from each playlist and obtain a collection of 50
screencasts (25 for Python and 25 for Java).

Table II shows the details of the programming screencasts
we crawl. The selected playlists cover beginner, intermediate
and advanced level of programming knowledge. From Video
Topic, we can see that nine playlists cover the fundamental
programming concepts and knowledge, and one playlist (P9)
covers Java GUI. The tools used in screencasts are diverse. For
Python, P1, P3 and P5 use the interactive shell, P4 uses IDE
(PyCharm), and P2 uses both interactive shell and PyCharm.
For Java, all five playlists use IDE (four use Eclipse and
one (P9) uses NetBeans). Even for the same tool, different
developers may use different color themes, font size, etc.

The selected screencasts have a duration between four to
15 minutes (median=7 minutes). Python and Java screencasts
have almost the same total duration. The durations of the
selected screencasts are appropriate for our study because they
are long enough to contain adequate and diverse developer
actions, but they do not contain much repetitive work which
may inflate model performance superficially. The program-
ming screencasts in a playlist as a whole can be regarded
as about 30-40 minutes of programming work by a developer.

B. Manual Labeling of Developer Actions in Screencasts

In this work, we decode programming screencasts into
frames at the rate of 15 frames per second by OpenCV [39].
As our model takes two consecutive frames as input, the model
training and testing datasets are organized in the form of frame
pairs. As explained in our problem statement (see Section II),
we discard frame pairs with no screen changes (i.e., no action)



TABLE II
THE DATASET OF PROGRAMMING SCREENCASTS CRAWLED FROM YOUTUBE

Python Java
PL
ID

PL
Name Tools Video

ID
Video
Topic Dur(s) PL

ID
PL

Name Tools Video
ID

Video
Topic Dur(s)

P1
Python

Programming
Tutorials

Interactive
Shell

V1 bitwise operation 420

P6

Java
Tutorial

for
Beginners

Eclipse

V1 variables 597
V2 variables 259 V2 input 730
V3 lists 450 V3 switch case 577
V4 dictionaries 382 V4 while 408
V5 arithmetic 323 V5 string 534

P2
Python 3.4

Programming
Tutorials

Interactive
Shell &

PyCharm

V1 numbers 329

P7

Java
(Beginner)

Programming
Tutorials

Eclipse

V1 variables 445
V2 string 505 V2 input 331
V3 lists 465 V3 if 362
V4 if else 552 V4 switch 407
V5 for 429 V5 classes 394

P3
Python

Programming
Tutorials

Interactive
Shell

V1 numbers 340

P8
Java

(Intermediate)
Tutorials

Eclipse

V1 array 360
V2 variables 385 V2 stack 342
V3 strings 383 V3 queue 337
V4 dictionaries 373 V4 hashset 287
V5 for & while 337 V5 return 365

P4
Python

Programming
Tutorials

PyCharm

V1 while 399

P9
Java
GUI

Tutorials
NetBeans

V1 image 465
V2 functions 394 V2 event 496
V3 dictionaries 778 V3 numbers 445
V4 bitwise operation 588 V4 beeper 527
V5 if else 378 V5 grid layout 295

P5

Python
Tutorial

for
Beginners

Interactive
Shell

V1 numbers 542

P10

Java
Tutorial

for
Beginners 2018

Eclipse

V1 variables 516
V2 variables 608 V2 if else 418
V3 models functions 641 V3 while 486
V4 string 756 V4 arithmetic 545
V5 lists 756 V5 class 559

by image differencing. This removes about 60% of frame
pairs in the initial dataset. We then manually label each frame
pair with screen changes by one of the 10 classes of actions
defined in Section II. Take Fig. 1 as example. The frame pair
(fx, fx+1) is labeled as “trigger popup (C6)”, (fy, fy+1) as
“select text (C8)”, and (fz, fz+1) as “scroll text (C7)”.

To ensure the quality of data labeling, the two authors
and another developer participate in the data labeling. The
annotators have at least 3 years programming experience on
Python and Java. For efficient and consistent labeling, we
develop a Python application by which the annotators can view
frame pairs with screen changes in a screencast one by one
and select a class label for each frame pair. Each annotator first
labels the whole dataset independently. The Fleiss’ kappa of
the three annotators’ labeling results is 0.76 which indicates
substantial agreement. If two or three annotators assign the
same label to a frame pair, that label is the final label. In the
cases when the three annotators give three different labels for
a frame pair, the annotators discuss to decide the final label.

Table III summarizes the distribution of different classes of
developer actions out of our manual labeling process. This
labeled dataset consists of 73725 frame pairs in total, which
requires significant human efforts (about 3 man-months). We
can see that ”scroll text” and ”switch window” have fewer
instances than other classes. This is because programming
screencasts on Youtube usually do not involve very long code
to scroll or many files to switch. Furthermore, we observe that
the action distributions for Python and Java are largely similar.
But Java has relatively more “trigger popups” and “switch
window”. This is because all five Java screencasts use IDEs
while 4 of 5 Python screencasts use interactive shell (with no

popup support or fewer windows to switch).

C. Evaluation Metrics

We evaluate and compare model performance for action
recognition by four metrics: Accuracy, Precision, Recall and
F1-score. The correctness of the predicted action for a frame
pair is determined against the human label of developer
action for that frame pair (i.e., ground truth). Precision for
an action class C is the proportion of frame pairs that are
correctly predicted as C among all frame pairs predicted
as C. Recall for an action class C the proportion of frame
pairs that are correctly predicted as C among all ground-
truth frame pairs labelled as C. F1-score for an action class
C combines the precision and recall as 2 × (PrecisionC ×
RecallC)/(PrecisionC+RecallC). As multiple action labels
are predicted by our model, we compute the weighted average
of precision, recall and F1-score for all action classes as a
whole (i.e.,

∑10
c=1 (metric ∗ countc) /

∑10
c=1 countc), which

gives a view on the general prediction performance. We also
calculate accuracy to evaluate the overall performance, i.e., the
number of frame pairs correctly predicted by the model over
the total number of frame pairs.

D. Impact of Alternative Model Design (RQ1)

Motivation: Our approach relies on the CNN model to
extract image features for action recognition. The effectiveness
of the CNN for feature extraction directly affect the recog-
nition performance. In this work, we have three alternative
strategies for preparing input change regions to the CNN:
change-contrast (Strategy-1), action-continuity (Strategy-2),



TABLE III
STATISTICS OF DEVELOPER ACTIONS BY MANUAL LABELING

Action Class Python Java All
Move cursor by keyboard (C1) 10281 9714 19995

Move mouse over text region(C2) 11589 12321 23910
Move mouse over non-text region (C3) 4098 3723 7821

Enter text (C4) 3642 3264 6906
Delete text (C5) 1890 1671 3561

Trigger popups (C6) 1059 3831 4890
Scroll text (C7) 990 1122 2112
Select text (C8) 1539 1488 3027

Switch window (C9) 558 945 1503
Total 35646 38079 73725

Early fusion loss Late fusion loss

Fig. 6. Loss Convergence for Different Model Configurations

and change-contrast⊕action-continuity (Strategy-3), which ex-
ploit different properties of developer actions and screen chan-
ges. In addition, we extract image features by the two different
CNN architectures: early fusion versus late fusion. We want to
comparatively investigate the impact of these alternative model
designs on the performance of action recognition.

Method: In this experiment, we combine Python and Java
data in Table III. We use 80% of frame pairs and their
corresponding action labels for model training and the rest
20% for testing. We combine each strategy for input change
regions and each CNN architecture. As such, we have six
different models. We train each model separately using the
same training data and compare the model performance on
the same testing data.

Results: Fig. 6 shows the loss convergence during the model
training process. The horizontal axis is the number of training
iterations and the vertical axis shows the loss value after each
training iteration. We can see that the same input strategy
has similar loss convergence rate in early-fusion and late-
fusion architecture, but early-fusion architecture converges a
bit faster than late-fusion architecture. In both CNN architec-
tures, the change-contrast⊕action-continuity (InputStrategy-3)
converges faster than the other two input strategies.

Table IV and Table V show the performance results of the
six model configurations. We can see that using the input
Strategy-3 in both early-fusion and late-fusion architecture
achieves the much better performance in all evaluation metrics,
compared with the other two input strategies. The average
F1-score of the 10 action classes for the input Strategy-3
is 0.70 and 0.73 in early-fusion and late-fusion architecture,
respectively. The average F1-score for the other two input
strategies is only about 0.5. The input Strategy-1 and Strategy-
2 have very similar performance. They achieve acceptable
performance only for “move cursor” and “move mouse over
text” (F1-score around 0.7) which have the most number of

training samples. For the input Strategy-1 and Strategy-2, the
F1-scores for most other action classes are around or below
0.5. In contrast, for the input Strategy-3, the F1-scores for
most action classes are around or above 0.7.

Comparing the same input strategy in different CNN ar-
chitectures, we can see that the average F1-score of the 10
classes is very close for the input Strategy-2 and Strategy-
3. The performance gap for input Strategy-1 is relatively
larger. In general, late-fusion architecture performs better than
early-fusion architecture, especially for those action classes
with small numbers of data instances. However, late-fusion
has to execute the CNN twice for the two input change
regions, which doubles the computing time (see Section IV-F),
compared with early fusion that concatenates the two change
regions and feeds them as a whole through the CNN once.

Considering both change contrast and action continuity in
the input change regions is beneficial for action recognition,
compared with considering change contrast or action con-
tinuity alone. Early fusion and late fusion have very close
performance for action recognition, but late fusion requires
double computing time.

E. Model Performance Across Different Settings (RQ2)

Motivation: An effective action recognition model should
be able to generalize over variations within one class and va-
riations across developers, working environments (e.g., tools,
color themes) and programming languages. This RQ is set to
evaluate the performance of our model across different deve-
lopers, working environments and programming languages.

Approach: Considering the experiment results of RQ1,
our model in RQ2 uses change-contrast⊕action-continuity as
input strategy and early-fusion as CNN architecture. First, we
conduct 10 intra-playlist experiments. We randomly divide
the human-labeled frame pairs of each playlist into 80%
for training and 20% for testing. As the screencasts in a
playlist are produced by the same developer in the same
working environment, the intra-playlist experiments set the
performance upper bound to compare and understand the inter-
playlist and inter-programming-language performance.

For inter-playlist experiments, we use the human-labeled
frame pairs of four playlists in a programming language as
training data and the frame pairs of the left one playlist
as testing data. So we have 10 inter-playlist experiments.
Considering the data characteristics of our crawled playlists
(see Section IV-A), these inter-playlist experiments can test our
model performance across different developers and/or working
environments. For inter-language experiments, we train the
model using the human-labeled frame pairs of the five playlists
of one language and test the model using the data of the
other language. So we have two inter-language experiments
(denoted as Python→Java and Java→Python). In the inter-
language setting, both developers and working environments
are also different between model training and testing.

Results: Next, we report our intra-playlist, inter-playlist and
inter-language experiment results:



TABLE IV
PERFORMANCE OF THREE INPUT STRATEGIES WITH EARLY FUSION ARCHITECTURE

Strategy-1 Strategy-2 Strategy-3
Action Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Move cursor by keyboard (C1) 0.65 0.78 0.71 0.68 0.73 0.70 0.88 0.86 0.87
Move mouse over text region(C2) 0.79 0.59 0.67 0.81 0.63 0.71 0.84 0.84 0.84

Move mouse over non-text region (C3) 0.31 0.63 0.41 0.33 0.70 0.45 0.71 0.78 0.74
Enter text (C4) 0.73 0.42 0.53 0.54 0.50 0.52 0.77 0.86 0.81
Delete text (C5) 0.45 0.24 0.31 0.41 0.33 0.36 0.67 0.71 0.69

Trigger popups (C6) 0.43 0.31 0.36 0.50 0.50 0.50 0.71 0.54 0.61
Scroll text (C7) 0.18 0.24 0.20 0.40 0.18 0.25 0.66 0.40 0.50
Select text (C8) 0.55 0.38 0.45 0.49 0.30 0.37 0.77 0.50 0.60

Switch window (C9) 0.17 0.61 0.26 0.41 0.27 0.32 0.53 0.61 0.56
Others (C10) 0.34 0.51 0.41 0.53 0.47 0.50 0.69 0.66 0.67

Average 0.39 0.52 0.44 0.54 0.49 0.51 0.71 0.68 0.70
Accuracy 0.59 0.63 0.81

TABLE V
PERFORMANCE OF THREE INPUT STRATEGIES WITH LATE FUSION ARCHITECTURE

Strategy-1 Strategy-2 Strategy-3
Action Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Move cursor by keyboard (C1) 0.67 0.71 0.69 0.71 0.72 0.71 0.85 0.83 0.84
Move mouse over text region(C2) 0.74 0.60 0.66 0.72 0.61 0.66 0.87 0.85 0.86

Move mouse over non-text region (C3) 0.49 0.52 0.50 0.46 0.45 0.45 0.81 0.83 0.82
Enter text (C4) 0.49 0.40 0.44 0.53 0.51 0.52 0.81 0.84 0.82
Delete text (C5) 0.66 0.61 0.63 0.61 0.54 0.57 0.65 0.78 0.71

Trigger popups (C6) 0.50 0.46 0.48 0.57 0.38 0.45 0.75 0.83 0.79
Scroll text (C7) 0.45 0.40 0.42 0.47 0.41 0.44 0.75 0.61 0.67
Select text (C8) 0.65 0.47 0.54 0.65 0.46 0.54 0.67 0.80 0.78

Switch window (C9) 0.50 0.38 0.43 0.52 0.38 0.44 0.67 0.69 0.68
Others (C10) 0.41 0.63 0.49 0.43 0.58 0.49 0.74 0.68 0.70

Average 0.45 0.62 0.52 0.47 0.58 0.51 0.75 0.70 0.73
Accuracy 0.60 0.62 0.82

1) Intra-playlist: Table VI shows our model’s performance
in the 10 intra-playlist experiments. We show the accuracy and
the average precision, recall and F1-score for each playlist.
Our model performs very well for intra-playlist prediction,
with the mean F1-score 0.88± 0.016. We observe very small
performance differences between the playlists.

2) Inter-playlist: Table VII shows our model’s performance
on each testing playlist in the 10 inter-playlist experiments.
We can see that our model still has very good performance
for inter-playlist prediction, with the mean F1-score 0.79 ±
0.084. Compared with the intra-playlist performance, the inter-
playlist performance is inevitably lower, which is unsurprising
considering the variations across developers and/or working
environments. The performance is especially low for the tes-
ting playlist P1 and P9. P1 and P9 have very different working
environments from other playlists. For example, the mouse
pointer over non-text region in P1 is a very unique blue circle,
which never appears in the training playlist (P2/P3/P4/P5).
This results in the very poor precision and recall for “move
mouse over nontext” class. P9 is recorded with unusual dark
IDE theme which leads to very different screen features from
the IDEs used in the training playlists (P6/P7/P8/P10). This
affects the prediction of most action classes.

3) Inter-language: Table VIII shows the model performance
in the two inter-language experiments. The inter-language set-
ting is even more challenging as it involves not only language
variations but also developer and working environment vari-
ations. In this challenging setting, our model has reasonably
good performance (average F1-score 0.59 for Python→Java
and 0.68 for Java→Python). However, the model does not have
equally-good performance on all action classes. For example,

the model trained by Java screencasts cannot recognize “select
text” well in Python screencasts, but the model trained by
Python data performs reasonably well for recognizing “select
text” in Java data. By analyzing the data, we find that “select
text” in Python video is more variable than that in Java
video. “select text” in Java video only has blue background,
but “select text” in Python video has both blue and gray
background. Furthermore, neither model performs well for
“switch window” and “scroll text”, because these two action
classes have much fewer train samples than other classes.

Our model can be effectively trained and deployed in very
diverse developer, working environment and programming
language settings. Exposing the model to diverse training
data is crucial for good model performance.

TABLE VI
INTRA PLAYLIST RESULTS

Playlist ID Precision Recall F1-score Accuracy
P1 0.88 0.90 0.89 0.88
P2 0.90 0.87 0.88 0.89
P3 0.88 0.90 0.89 0.90
P4 0.90 0.88 0.89 0.89
P5 0.90 0.85 0.87 0.87
P6 0.87 0.85 0.86 0.87
P7 0.85 0.83 0.84 0.86
P8 0.90 0.90 0.90 0.90
P9 0.86 0.90 0.88 0.89
P10 0.90 0.87 0.88 0.90

mean±stddev 0.89±0.018 0.88±0.024 0.88±0.016 0.88±0.013

F. Runtime Performance (RQ3)

We test our tool for action recognition on a PC with
64G RAM, i9-7900x CPU and Titan Xp GPU. The CNN



TABLE VII
INTER PLAYLIST RESULTS

Playlist ID Precision Recall F1-score Accuracy
P1 0.71 0.73 0.72 0.73
P2 0.83 0.81 0.82 0.83
P3 0.85 0.81 0.83 0.85
P4 0.86 0.83 0.84 0.85
P5 0.85 0.86 0.85 0.85
P6 0.87 0.84 0.85 0.86
P7 0.81 0.85 0.83 0.84
P8 0.83 0.79 0.81 0.83
P9 0.66 0.50 0.57 0.67

P10 0.83 0.85 0.84 0.84
mean±stddev 0.80±0.065 0.79±0.102 0.79±0.084 0.82±0.059

TABLE VIII
INTER PROGRAMMING LANGUAGE RESULTS

Python→Java Java→Python
Action Precision Recall F1 Precision Recall F1

C1 0.88 0.90 0.89 0.86 0.84 0.85
C2 0.78 0.85 0.81 0.85 0.81 0.83
C3 0.62 0.70 0.66 0.58 0.80 0.67
C4 0.68 0.89 0.77 0.77 0.70 0.73
C5 0.48 0.73 0.58 0.56 0.50 0.53
C6 0.80 0.51 0.62 0.67 0.73 0.70
C7 0.43 0.52 0.47 0.31 0.62 0.41
C8 0.88 0.58 0.70 0.54 0.60 0.57
C9 0.52 0.44 0.47 0.46 0.55 0.50

C10 0.68 0.46 0.54 0.58 0.78 0.67
Average 0.69 0.52 0.59 0.61 0.78 0.68

Accuracy 0.74 0.78

model is implemented in TensorFlow [40]. Using early fusion
architecture, our tool can process about 8-10 frame pairs per
second. Using late fusion architecture, our tool can process
about 4-5 frame pairs per second. Image differencing accounts
for about 90% of processing time. Our results show that our
tool is fast enough for real-time developer action recognition.

V. PRACTICAL APPLICATION: ACTION-AWARE KEY-CODE
FRAME EXTRACTION

Having evaluated the performance of our model for action
recognition, we want to demonstrate a practical application
that our approach enables for programming screencast analy-
sis. A key challenge in programming screencast analysis is to
determine the key frames from which important code should
be extracted. In this study, we compare action-aware extraction
of key-code frames based on recognized developer actions in a
screencast with action-agnostic extraction of key-code frames
commonly used in existing work.

TABLE IX
COMPARISON OF KEY-CODE FRAME EXTRACTION METHODS

Method TP FP TN FN Pre. Rec. F1
Fixed time interval 24 36769 514790 312 0.0006 0.07 0.0013

Image similarity 336 2143 549516 0 0.13 1.00 0.24
ActionNet-based 316 91 551468 20 0.77 0.94 0.85

A. Screencast Dataset of Real Developer Work

We use screencast software to record about 10 hours of
real programming work of the two software developers. One
developer works on a Java project in Eclipse and the other
developer works on a Python project in Jupyter (an online Py-
thon development environment). The screencasts are decoded

at the rate of 15 frames per second. We ask the two developers
to identify the key-code frames in their screencasts. The two
developers define key-code frames as the frames that contain
code fragments before or after significant code changes, or the
frames that contain code fragments that may not be visible
again. They follow three behavioral patterns to identify key-
code frames: 1) Selects a block of code and deletes it, which
means that an old version of the code in the frame before code
deletion should be extracted. 2) Edits code and then switches to
another window, which means that code editing is temporarily
finished and the latest version of the code in the frame before
window switching should be extracted. 3) Scrolls code and
both the disappearing code in the frame before scrolling and
the appearing code in the frame after scrolling should be
extracted. In total, 336 key-code frames have been identified
which are used as ground-truth to compare different key-code
frame extraction methods.

B. Methods for Extracting Key-Code Frames

We train our model (change-contrast⊕action-continuity with
early-fusion architecture) using the dataset of Python and Java
programming screencasts from Youtube (see Section IV-A).
Then, we use the trained model to recognize the actions in
the 10 hours of screencasts of real developer work. Based on
the recognized actions, we identify the key-code frames in
the screencasts of real developer work by searching certain
sequential patterns of developer actions. We compare our
method with two action-agonistic methods commonly used in
existing work on programming screencast analysis [11], [21],
[30]. The first method extracts the first frame at a fix time
interval. Following the work [30], we set the time interval at
1 second. The second method extracts the next frame that is
different enough (below a user-specified similarity threshold)
from the previous frame. Following the work [26], we set the
similarity threshold at 0.95.

C. Results

Table IX presents the comparison results. We present True
Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN) for the three methods. The fixed-time-
interval based method is completely unaware of the workflow
and content of the screencasts. It outputs too many frames
(TP+FP=36793), among which only 24 frames accidentally hit
the ground-truth key-code frames. So the fixed-time-interval
based method has very low precision and recall. It will waste
so much computing resource to try to extract code from so
many unnecessary frames.

Frame-similarity based method significantly decreases the
number of extracted frames, but it still extracts 2479 (TP+FP)
frames. As the ground-truth key-code frames identified by
the developers all involve substantial screen changes, frame-
similarity based method actually identifies all ground-truth
frames at the similarity threshold 0.95 (i.e., recall=1 in our
experiment). However, this result may be sensitive to the scale
of screen changes and the similarity threshold. Furthermore,



frame-similarity based method still identifies many false posi-
tive frames (FP=2143), for example, frames with popups and
text selection. Although these frames have substantial screen
changes, they do not change the code and do not need to be
repeatedly extracted if the key-code frames have already been
extracted. Furthermore, screen content in such frames is noisy
which will negatively affect the quality of OCR.

ActionNet-based method extracts the least amount of frames
(TP+FP=407), only about 16% of the number of frames
extracted by frame-similarity based method. But ActionNet-
based method has only a minor decrease in recall, compared
with the recall of frame-similarity based method (0.94 versus
1.00). ActionNet-based method still extracts some unnecessary
frames (FP=91), but its precision is about six times higher than
that of frame-similarity based method (0.77 versus 0.13). The
main reason for the false positive frames by ActionNet-based
method is the coarse-grained definition of action classes. For
example, both “enter or delete a word” and “enter or delete
several lines of code” are now recognized as “enter or delete
text”. So some frames with minor code changes are extracted,
but the developers do not consider such changes significant
enough so that they do not label such frames as key-code
frames. Such false positive frames could be filtered out by
distinguishing finer-grained actions.

VI. RELATED WORK

Developer behavioral research: In behavioral research,
data collection methods include observation, survey and in-
terview. Observational data can be collected by using eyetrac-
ker and fMRI [41]–[43], software instrumentation [5], [44],
[45], or screencasting [11], [26]. Among these observational
data collection methods, screencasting is the easiest one to
deploy. However, due to the image nature of screencasts, the
workflow actions and application content in screencasts must
be extracted before any meaningful behavioral research can
be conducted. Our work develops the first tool to automati-
cally extract workflow actions from programming screencasts.
Our tool can lower the barrier for action-centric analysis of
programming screencasts [4], enabling large-scale behavioral
research in software engineering.

Programming screencast analysis: Existing methods falls
into two categories: content extraction [11], [46]–[51] and
video search and navigation [8], [21], [27], [29]–[31]. Content
extraction in existing work is simply based on fix time interval
or frame similarity. Some tools like Waken [26] use image
differencing technique to identify UI elements (e.g., mouse
pointer) but not actions (e.g., move the mouse over text). VT-
Revolution by Bao et al. [8] shows that workflow actions in
a programming screencast, if available, can significantly im-
prove video search and navigation efficiency and enhance the
learning experience. However, it uses software instrumentation
to collect workflow actions during screencasting. It envisions
to support the interactive video watching experience for You-
tube programming screencasts that are not accompanied with
workflow actions. Our tool is the first step towards making
this vision closer to reality.

General human action recognition: Our work recognizes
developer actions in the virtual world, while general human
action recognition recognizes human actions in the physical
world. Early techniques for human action recognition in-
clude hidden Markov model [52] and discriminative SVM
models [53]. Recent work has used deep learning techniques,
such as two stream CNNs [23], C3D (3D convolutional neural
network) [54]. Considering the duration of physical human
actions, these techniques usually analyze multiple frames
(e.g. 16 frames in C3D). However, developer actions on
computer cause instant screen changes. As such, developer
actions must be recognized from the screen change between
two frames. The accuracy of our technique is on par with
that of human action recognition [23]–[25]. Human action
recognition enables many applications, such as action-centric
video search [55], [56], automatic surveillance [57], [58],
smart homes [59], [60]. These applications inspire downstream
applications based on the recognition of developer actions in
screencasts using our technique, such as developer risk beha-
vior surveillance. Existing tools (e.g., CheckStyle, FindBugs)
are code-centric. None of them can prevent programming
mistakes from behavioral perspectives.

Deep learning for software data: Recently, deep learning
techniques have been successfully applied to many forms of
software data, such as source code and software text [61]–
[66], and user interface images [67]–[69]. Different from
these works, our work is the first to apply deep learning
to recognize workflow actions in programming screencasts.
A recent work [50] uses CNN-based techniques to predict
programming languages used in screencasts, which is a much
easier task than our developer action recognition.

VII. CONCLUSIONS AND FUTURE WORK

This paper fills in an important missing technique in the tool
set for programming screencast analysis. The core component
of our technique is a CNN model. This design is driven by the
CNN’s ability to automatically learn to extract image features
from the screen changes resulting from developer actions, thus
removing the need for manual feature engineering which is
a challenging task due to the diversity of developer actions,
working environments and programming languages. Our expe-
riments show that our technique can generalize over variations
within action classes and variations across developers, working
environments and programming languages.

This work develops an enabling technique for action-aware
analysis of programming screencasts (e.g., key-code frame ex-
traction). In this future, we will build a big database of develo-
pers’ workflow actions, considering millions of programming
screencasts on Youtube. Such a database will enable much
downstream research work which we will investigate, such as
large-scale behavioral research in software engineering, action-
aware search and navigation of Youtube programming screen-
casts, or developer risk behavior surveillance for proactively
avoiding programming mistakes.



VIII. ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Titan Xp GPU used for this
research.



REFERENCES

[1] J. Wang, X. Peng, Z. Xing, and W. Zhao, “An exploratory study
of feature location process: Distinct phases, recurring patterns, and
elementary actions,” in Software Maintenance (ICSM), 2011 27th IEEE
International Conference on. IEEE, 2011, pp. 213–222.

[2] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek,
when and how?” in Reverse Engineering (WCRE), 2013 20th Working
Conference on. IEEE, 2013, pp. 142–151.

[3] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, 2017.

[4] L. Bao, Z. Xing, X. Xia, D. Lo, and A. E. Hassan, “Inference of de-
velopment activities from interaction with uninstrumented applications,”
Empirical Software Engineering, vol. 23, no. 3, pp. 1313–1351, 2018.

[5] L. Bao, D. Ye, Z. Xing, X. Xia, and X. Wang, “Activityspace: a
remembrance framework to support interapplication information needs,”
in Automated Software Engineering (ASE), 2015 30th IEEE/ACM Inter-
national Conference on. IEEE, 2015, pp. 864–869.

[6] A. J. Ko, H. Aung, and B. A. Myers, “Eliciting design requirements for
maintenance-oriented ides: a detailed study of corrective and perfective
maintenance tasks,” in Proceedings of the 27th international conference
on Software engineering. ACM, 2005, pp. 126–135.

[7] L. Ponzanelli, G. Bavota, A. Mocci, R. Oliveto, M. Di Penta, S. C. Hai-
duc, B. Russo, and M. Lanza, “Automatic identification and classification
of software development video tutorial fragments,” IEEE Transactions
on Software Engineering, no. 1, pp. 1–1, 2017.

[8] L. Bao, Z. Xing, X. Xia, and D. Lo, “Vt-revolution: Interactive program-
ming video tutorial authoring and watching system,” IEEE Transactions
on Software Engineering, 2018.

[9] M. Hilton and A. Begel, “A study of the organizational dynamics of
software teams,” in Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice. ACM,
2018, pp. 191–200.

[10] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing, “What
do developers search for on the web?” Empirical Software Engineering,
vol. 22, no. 6, pp. 3149–3185, 2017.

[11] L. Bao, J. Li, Z. Xing, X. Wang, X. Xia, and B. Zhou, “Extracting
and analyzing time-series hci data from screen-captured task videos,”
Empirical Software Engineering, vol. 22, no. 1, pp. 134–174, 2017.

[12] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information fora-
ging theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197–215, 2013.

[13] J. Sillito, K. De Voider, B. Fisher, and G. Murphy, “Managing software
change tasks: An exploratory study,” in Empirical Software Engineering,
2005. 2005 International Symposium on. IEEE, 2005, pp. 10–pp.

[14] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on software
engineering, vol. 32, no. 12, pp. 971–987, 2006.

[15] D. Piorkowski, S. D. Fleming, C. Scaffidi, L. John, C. Bogart, B. E. John,
M. Burnett, and R. Bellamy, “Modeling programmer navigation: A head-
to-head empirical evaluation of predictive models,” in Visual Languages
and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on.
IEEE, 2011, pp. 109–116.

[16] T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and C. Bräunlich,
“Developers’ code context models for change tasks,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 7–18.

[17] A. J. Ko, H. H. Aung, and B. A. Myers, “Design requirements for more
flexible structured editors from a study of programmers’ text editing,”
in CHI’05 extended abstracts on human factors in computing systems.
ACM, 2005, pp. 1557–1560.

[18] P. Dewan, P. Agarwal, G. Shroff, and R. Hegde, “Distributed side-
by-side programming,” in Proceedings of the 2009 ICSE workshop
on cooperative and human aspects on software engineering. IEEE
Computer Society, 2009, pp. 48–55.

[19] A. Hurst, S. E. Hudson, and J. Mankoff, “Automatically identifying
targets users interact with during real world tasks,” in Proceedings of
the 15th international conference on Intelligent user interfaces. ACM,
2010, pp. 11–20.

[20] T.-H. Chang, T. Yeh, and R. Miller, “Associating the visual represen-
tation of user interfaces with their internal structures and metadata,”
in Proceedings of the 24th annual ACM symposium on User interface
software and technology. ACM, 2011, pp. 245–256.

[21] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto, B. Russo,
S. Haiduc, and M. Lanza, “Codetube: extracting relevant fragments
from software development video tutorials,” in Proceedings of the 38th
International Conference on Software Engineering Companion. ACM,
2016, pp. 645–648.

[22] S. Mori, H. Nishida, and H. Yamada, Optical character recognition.
John Wiley & Sons, Inc., 1999.

[23] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[24] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venug-
opalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp.
2625–2634.

[25] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[26] N. Banovic, T. Grossman, J. Matejka, and G. Fitzmaurice, “Waken:
reverse engineering usage information and interface structure from
software videos,” in Proceedings of the 25th annual ACM symposium
on User interface software and technology. ACM, 2012, pp. 83–92.

[27] C. Nguyen and F. Liu, “Making software tutorial video responsive,” in
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems. ACM, 2015, pp. 1565–1568.

[28] A. Mahendran and A. Vedaldi, “Understanding deep image represen-
tations by inverting them,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 5188–5196.

[29] T.-J. K. P. Monserrat, S. Zhao, K. McGee, and A. V. Pandey, “No-
tevideo: facilitating navigation of blackboard-style lecture videos,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2013, pp. 1139–1148.

[30] K. Khandwala and P. J. Guo, “Codemotion: expanding the design space
of learner interactions with computer programming tutorial videos,” in
Proceedings of the Fifth Annual ACM Conference on Learning at Scale.
ACM, 2018, p. 57.

[31] S. Pongnumkul, M. Dontcheva, W. Li, J. Wang, L. Bourdev, S. Avidan,
and M. F. Cohen, “Pause-and-play: automatically linking screencast
video tutorials with applications,” in Proceedings of the 24th annual
ACM symposium on User interface software and technology. ACM,
2011, pp. 135–144.

[32] https://scikit-image.org, august 24, 2018.
[33] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,

inception-resnet and the impact of residual connections on learning.” in
AAAI, vol. 4, 2017, p. 12.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[35] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[36] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML Deep Learning Workshop, vol. 2,
2015.

[37] https://developers.google.com/youtube/v3/, august 24, 2018.
[38] https://rg3.github.io/youtube-dl/, august 24, 2018.
[39] https://opencv.org, august 24, 2018.
[40] https://www.tensorflow.org, august 24, 2018.
[41] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,

“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proceedings of the 36th International Con-
ference on Software Engineering. ACM, 2014, pp. 390–401.

[42] T. R. Shaffer, J. L. Wise, B. M. Walters, S. C. Müller, M. Falcone, and
B. Sharif, “itrace: Enabling eye tracking on software artifacts within the
ide to support software engineering tasks,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ACM,
2015, pp. 954–957.

[43] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann, “Understanding understanding source

https://scikit-image.org
https://developers.google.com/youtube/v3/
https://rg3.github.io/youtube-dl/
https://opencv.org
https://www.tensorflow.org


code with functional magnetic resonance imaging,” in Proceedings of
the 36th International Conference on Software Engineering. ACM,
2014, pp. 378–389.

[44] D. M. Hilbert and D. F. Redmiles, “Extracting usability information
from user interface events,” ACM Computing Surveys (CSUR), vol. 32,
no. 4, pp. 384–421, 2000.

[45] J. H. Kim, D. V. Gunn, E. Schuh, B. Phillips, R. J. Pagulayan, and
D. Wixon, “Tracking real-time user experience (true): a comprehensive
instrumentation solution for complex systems,” in Proceedings of the
SIGCHI conference on Human Factors in Computing Systems. ACM,
2008, pp. 443–452.

[46] J. Kim, P. J. Guo, C. J. Cai, S.-W. D. Li, K. Z. Gajos, and R. C.
Miller, “Data-driven interaction techniques for improving navigation of
educational videos,” in Proceedings of the 27th annual ACM symposium
on User interface software and technology. ACM, 2014, pp. 563–572.

[47] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto, M. Hasan,
B. Russo, S. Haiduc, and M. Lanza, “Too long; didn’t watch!: extracting
relevant fragments from software development video tutorials,” in Pro-
ceedings of the 38th International Conference on Software Engineering.
ACM, 2016, pp. 261–272.

[48] J. Escobar-Avila, E. Parra, and S. Haiduc, “Text retrieval-based tagging
of software engineering video tutorials,” in Software Engineering Com-
panion (ICSE-C), 2017 IEEE/ACM 39th International Conference on.
IEEE, 2017, pp. 341–343.

[49] S. Yadid and E. Yahav, “Extracting code from programming tutorial
videos,” in Proceedings of the 2016 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software. ACM, 2016, pp. 98–111.

[50] J. Ott, A. Atchison, P. Harnack, A. Bergh, and E. Linstead, “A deep
learning approach to identifying source code in images and video,” 2018.

[51] P. Moslehi, B. Adams, and J. Rilling, “Feature location using crowd-
based screencasts,” 2018.

[52] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-
sequential images using hidden markov model,” in Computer Vision
and Pattern Recognition, 1992. Proceedings CVPR’92., 1992 IEEE
Computer Society Conference on. IEEE, 1992, pp. 379–385.

[53] J. C. Niebles, C.-W. Chen, and L. Fei-Fei, “Modeling temporal structure
of decomposable motion segments for activity classification,” in Euro-
pean conference on computer vision. Springer, 2010, pp. 392–405.

[54] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp.
4489–4497.

[55] D. Gerónimo and H. Kjellström, “Unsupervised surveillance video
retrieval based on human action and appearance,” in Pattern Recognition
(ICPR), 2014 22nd International Conference on. IEEE, 2014, pp. 4630–
4635.

[56] L. Shao, S. Jones, and X. Li, “Efficient search and localization of human
actions in video databases,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 24, no. 3, pp. 504–512, 2014.

[57] A. Meidan and R. B. Sella, “Automatic video surveillance system and
method,” Feb. 2 2016, uS Patent 9,253,453.

[58] S. Pushparaj and S. Arumugam, “Using 3d convolutional neural network
in surveillance videos for recognizing human actions.” Int. Arab J. Inf.
Technol., vol. 15, no. 4, pp. 693–700, 2018.

[59] B. M. H. Alhafidh, A. I. Daood, and W. H. Allen, “Comparison of
classifiers for prediction of human actions in a smart home,” in Internet-
of-Things Design and Implementation (IoTDI), 2018 IEEE/ACM Third
International Conference on. IEEE, 2018, pp. 287–288.

[60] B. Alhafidh and W. Allen, “Design and simulation of a smart home
managed by an intelligent self-adaptive system,” International Journal
of Engineering Research and Applications, vol. 6, no. 8, pp. 64–90,
2016.

[61] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, “Predicting seman-
tically linkable knowledge in developer online forums via convolutional
neural network,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2016, pp. 51–
62.

[62] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2016, pp. 87–98.

[63] Q. Luo, D. Poshyvanyk, and M. Grechanik, “Mining performance regres-
sion inducing code changes in evolving software,” in Mining Software

Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on.
IEEE, 2016, pp. 25–36.

[64] J. Li, A. Sun, and Z. Xing, “Learning to answer programming ques-
tions with software documentation through social context embedding,”
Information Sciences, vol. 448, pp. 36–52, 2018.

[65] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, and A. Ghose,
“Predicting components for issue reports using deep learning with infor-
mation retrieval,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings. ACM, 2018, pp.
244–245.

[66] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing.” in
AAAI, vol. 2, no. 3, 2016, p. 4.

[67] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From ui design image
to gui skeleton: a neural machine translator to bootstrap mobile gui
implementation,” in Proceedings of the 40th International Conference
on Software Engineering. ACM, 2018, pp. 665–676.

[68] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk,
“Automated reporting of gui design violations for mobile apps,” arXiv
preprint arXiv:1802.04732, 2018.

[69] K. Moran, C. Watson, J. Hoskins, G. Purnell, and D. Poshyvanyk,
“Detecting and summarizing gui changes in evolving mobile apps,”
arXiv preprint arXiv:1807.09440, 2018.


	Introduction
	Problem Statement
	Approach
	Change Region Detection by Image Differencing
	Change Region Feature Extraction by Vision CNN
	Input Change Regions to CNN
	CNN Architectures

	Action Recognition by Multi-Class Classification

	Evaluation of Model Performance
	The Dataset of Programming Screencasts on Youtube
	Manual Labeling of Developer Actions in Screencasts
	Evaluation Metrics
	Impact of Alternative Model Design (RQ1)
	Model Performance Across Different Settings (RQ2)
	Runtime Performance (RQ3)

	Practical Application: Action-Aware Key-Code Frame Extraction
	Screencast Dataset of Real Developer Work
	Methods for Extracting Key-Code Frames
	Results

	Related Work
	Conclusions and Future Work
	Acknowledgment
	References

