
Mining Analogical Libraries in Q&A Discussions
— Incorporating Relational and Categorical Knowledge into Word Embedding

Chunyang Chen, Sa Gao, Zhenchang Xing

School of Computer Engineering, Nanyang Technological University, Singapore

chen0966@e.ntu.edu.sg; gaos0011@e.ntu.edu.sg; zcxing@ntu.edu.sg

Abstract—Third-party libraries are an integral part of many
software projects. It often happens that developers need to find
analogical libraries that can provide comparable features to the
libraries they are already familiar with. Existing methods to
find analogical libraries are limited by the community-curated
list of libraries, blogs, or Q&A posts, which often contain
overwhelming or out-of-date information. In this paper, we
present a new approach to recommend analogical libraries based
on a knowledge base of analogical libraries mined from tags
of millions of Stack Overflow questions. The novelty of our
approach is to solve analogical-libraries questions by combining
state-of-the-art word embedding technique and domain-specific
relational and categorical knowledge mined from Stack Over-
flow. We implement our approach in a proof-of-concept web
application (https://graphofknowledge.appspot.com/similartech).
The evaluation results show that our approach can make accu-
rate recommendation of analogical libraries (Precision@1=0.81
and Precision@5=0.67). Google Analytics of the website traffic
provides initial evidence of the potential usefulness of our web
application for software developers.

Keywords-Analogical libraries; Word embedding; Knowledge
graph; Relational knowledge; Categorical knowledge;

I. INTRODUCTION

Third-party libraries are an integral part of many software

systems. Thung et al. [1] show that among 1,008 projects

in GitHub they investigate, 93.3% of which use third-party

libraries, at an average of 28 third-party libraries per project. It

often happens that a developer needs some analogical libraries

that can provide features comparable to the libraries he is

already familiar with. Fig. 1 presents an example of such

information need.

Sometimes, the library that a developer currently uses is

no longer under active development, or lacks certain desired

features, or cannot satisfy performance requirements. In such

cases, the developer wants to find some good replacements [2].

In other cases, the developer switches to a new programming

language, but he would like to “reuse” his good experience

with some libraries that he is familiar with [3], [4] (such as the

example shown in Fig. 1). Even though some libraries provide

interfaces to multiple programming languages, most libraries

are implemented in only one language and work the best with

that language. It would be desirable to find analogical libraries

that are best suited for the new programming language that the

developer switches to.

Developers can search the Internet for analogical libraries.

They could find useful information in some community-

curated list of libraries, such as unit testing framework on

Tags

language os concept library

Fig. 1. An exmaple of analogical-library question on Stack Overflow.

Wikipedia1, and Awesome PHP on Github2. These library

lists are usually very comprehensive, but they often contain

many more or less crappy libraries. Developers may also find

useful information in blogs (e.g., “Beyond JUnit - Testing
Frameworks Alternatives”3) or forum posts (e.g., “Alterna-
tives to JUnit”4). Blogs and forum posts are usually more

focused, but they are often opinion-based and contain out-

of-date information. When developers cannot find satisfactory

information on the Internet or want to confirm their search

findings, they may ask on Q&A web sites like Stack Overflow

(such as the example shown in Fig. 1), but may not get the

immediate answers.

In this paper, we present a new approach to find analogical

libraries. Our approach is based on the empirical findings

showing that taken in aggregate posts on Stack Overflow

act as a knowledge repository of developers’ practices and

thoughts [5], and that the main technologies or constructs

that a question revolves around can usually be identified from

question tags [6] (see Fig. 1). Instead of listing dozens of

crappy libraries or relying on blogs or Q&A posts, our ap-

proach recommends analogical libraries based on a knowledge

base of analogical libraries mined from tags of millions of

Stack Overflow questions. This knowledge base is like forever

evolving blog posts about good analogical libraries to the

libraries that one is familiar with.

Our approach is motivated by the recent success of neural

network language models in Natural Language Processing

1https://en.wikipedia.org/wiki/List of unit testing frameworks
2https://github.com/ziadoz/awesome-php
3http://www.javacodegeeks.com/2012/04/beyond-junit-testing-frameworks.

html
4http://www.coderanch.com/t/95225/Testing/Alternatives-JUnit

2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

978-1-5090-1855-0/16 $31.00 © 2016 IEEE

DOI 10.1109/SANER.2016.21

338

python nltk
python nlp nltk pos-tagger
python nlp nltk tf-idf
python nlp nltk tokenize
python nltk stanford-nlp
python nltk parsing chunking

.

.

.

java opennlp
java nlp opennlp pos-tagger
java nlp opennlp tf-idf
java nlp opennlp tokenize
java opennlp stanford-nlp
java opennlp parsing chunking

.

.

.

Tag sentences

Fig. 2. The similar context of Python’s nltk and Java’s opennlp in tag
sentences

(NLP) applications [7], [8]. Recently, Mikolov et al. [9] and

Turney [10] demonstrate that neural network language models

are able to learn word representations (or word embeddings)

that can be exploited to solve analogy questions of the form

“a is to A as ? is to B”, for example, “Paris is to France as ?

is to Spain”. The unknown word “?” can be inferred from the

words (e.g., Madrid) whose word embedding is most similar

to the resulting vector of vector arithmetic a − A + B (e.g.,

Paris− France+ Spain)

In our approach, we consider tags of a Stack Overflow

question as a tag sentence, and each tag as a word in the

sentence. As illustrated in Fig. 2, analogical libraries (such as

Python’s nltk and Java’s opennlp) would share similar context

in tag sentences, such as common concepts and techniques.

Given a corpus of tag sentences derived from Stack Overflow

questions, we use continuous skip-gram learning algorithm [7]

to learn the word representation of each tag using the surround-

ing context of the tag in the corpus of tag sentences. Given a

library (e.g., python’s nltk), we reduce the problem of finding

analogical libraries for a programming language (e.g., java)

as nltk for python to a K-nearest-neighbor search for the tags

(e.g., opennlp) whose word representation is the most similar

to the vector nltk − python + java in the resulting word

embedding space.

However, application of neural network language models

to the problem of learning tag embeddings in tag sentences,

as opposed to learning word representations in everyday NLP

problems, brings unique challenges. First, contrary to everyday

language where linguistic rules and notions of words and

sentences are clearly defined, question tags on Stack Overflow

are composed of only up-to five terms where there is no

existing notion of the surrounding context equivalent to natural

language domain. Second, question tags could be noisy or

biased such that they cannot reflect the inherent relationship

between tags and further mislead the learning process.

To address these challenges, we incorporate domain-specific

relational and categorical knowledge into tag embeddings in

order to produce better mappings of analogical libraries. In

our approach, relational knowledge encodes the correlation

between tags. We use association rule mining [11] to mine

the correlation between tags from tag co-occurrence patterns in

millions of Stack Overflow questions. Categorical knowledge

encodes the category of tags (e.g., library, framework, concept,

platform, database, and so on). We use Part-of-Speech tagging

and phrase chunking methods [12] to analyze the TagWiki

description of each tag to determine the category of the tags.

Both relational and categorical knowledge can serve as valu-

able external information to help differentiate library-program-

language pairs with analogy relationships, even if there is little

context information or biased/noisy context information in tag

sentences.

We implement our approach in a proof-of-concept web ap-

plication (https://graphofknowledge.appspot.com/similartech).

The application takes as input a library name and recommends

analogical libraries for different programming languages. The

backend analogical-libraries knowledge base is built using the

latest Stack Overflow data dump. We evaluate the analogical-

libraries recommendations for randomly selected 100 libraries

using our approach. The results show that our approach can

make accurate recommendation of analogical libraries (Pre-

cision@1=0.81 and Precision@5=0.67). Furthermore, Google

Analytics of the website traffic provides initial evidence of

the potential usefulness of our web application for software

developers.

We make the following contributions in this work:

• We formulate analogical-libraries recommendation as a

NLP analogy task and adapt the cutting-edge word em-

bedding technique to infer analogical libraries.

• We mine domain-specific relational and categorical

knowledge from Stack Overflow and use the mined

knowledge to enhance analogical-libraries reasoning.

• We implement our approach in a working web application

and evaluate the quality of analogical-libraries recom-

mendation using our approach.

II. RELATED WORK

Recommendation systems are widely utilized in Software

Engineering context. Many applications have been proposed

to recommend code snippets for developers, such as Jun-

gloid [13], ParseWeb [14], MAPO [15]. Chan et al. [16]

and Thung et al. [17] recommend API methods according

to natural-language queries. In industry, code search engines

have been developed (such as Google code, OpenHub) for

developers to search code on the Internet. Compared with these

code-level recommendation systems, our approach works at

a different level of granularity i.e., library-level, and recom-

mends analogical third-party libraries to the developers.

Language migration is a common phenomenon for devel-

opers as they may have to switch from one programming

language to another according to the task requirements. The

biggest challenge is usually the code and library migration,

rather than learning a new language itself5. Many researchers

5http://stackoverflow.com/questions/212151/

339

have proposed methods to overcome the code migration chal-

lenge, such as code mapping [18], function mapping [19], and

API migration [3], [4]. In contrast to these code-level migra-

tion approaches, our approach supports library-level migration.

Thung et al. [1] analyze the library co-occurrence patterns

in software projects to recommend relevant libraries for a

software project. Teyton et al. [2] analyze the evolution of

projects’ dependencies on third-party libraries to recommend

libraries that can replace an existing library in a software

project. Different from these approaches, our approach does

not rely on the information about the projects’ dependencies on

third-party libraries. Instead, we mine analogical libraries from

the crowdsourced knowledge in domain-specific Q&A sites

(such as Stack Overflow). Furthermore, existing approaches

are limited to recommend libraries for the same programming

language, while our system can recommend alternative, com-

parable libraries across different programming languages.

Our approach is motivated by the recent success of neural

network language models for solving semantic and syntactic

analogy tasks in NLP applications [7], [10]. We propose to

learn tag embeddings from a corpus of tag sentences derived

from Stack Overflow questions, and solve the problem of

finding analogical libraries using the vector arithmetic of

the resulting tag embeddings. Different from English text

in common NLP problems, our tag sentences are short and

lack of linguistic rules and notions. Inspired by the recent

work by Xu et al. [20] and Zhou et al. [21], we propose to

incorporate relational and categorical knowledge of tags into

tag embeddings to improve the accuracy of analogical-libraries

reasoning tasks. Different from [20], [21] in which semantic

knowledge are provided by human experts, our approach

mines domain-specific knowledge automatically from Q&A

discussions and community wikis on Stack Overflow.

Finally, it is worth mentioning some related non-academic

projects. SimilarWeb6 is a website that provides both users

engagement statistics and similar competitors for websites

and mobile applications. AlternativeTo7 is a social software

recommendation website in which users can find alternatives

to a given software based on user recommendations. These

websites can help regular web users to find similar or alter-

native websites or software applications. But their content is

not useful for domain-specific information needs of software

developers, for example, to find analogical libraries for differ-

ent programming languages. In contrast, our web application is

built on software-engineering data and is specifically designed

for software developers.

III. THE APPROACH

Our approach takes as input the tags of each question in

Stack Overflow and the TagWiki of each tag, and produces

as output a knowledge base of analogical libraries (Fig. 3).

Our approach considers the tags of a Stack Overflow question

as a tag sentence, and each tag of the question as a word in

6www.similarweb.com/
7http://alternativeto.net/

Association rule
mining

POS & Phrase
chunking & Rule

matching

Tag wiki Tag sentences

Vector space

Continuous skip-
gram model

Relational
Knowledge

Categorical
Knowledge

Analogical-library
Knowledge base

Extract analogical
libraries

Fig. 3. The overview of our approach

the tag sentence. Given a set of Stack Overflow questions,

we build a corpus of tag sentences, one tag sentence per

question. Given the corpus of tag sentences, we use associ-

ation rule mining [11] to mine the correlation between tags

(Section III-A), and use continuous skip-gram model [7] to

learn tag embeddings (Section III-C). We develop POS tagging

and phrase chunking methods to analyze the tag definition

in the TagWiki of each tag to determine the tag category

(Section III-B). Finally, we incorporate tag embeddings and

relational and categorical knowledge of tags to build the

knowledge base of analogical libraries (Section III-D).

A. Mining Relational Knowledge

In Stack Overflow, each question has up to 5 tags. These

tags usually identify the main technologies and constructs that

the question revolves around [6] (see Fig. 1 for an example).

As Stack Overflow manages question tags as a set of terms, the

correlation between tags are implicit. We use association rule

mining [11] to discover important correlation between tags.

In our application of association rule mining, we regard each

tag sentence as a transaction, and each tag in the sentence as an

item in the transaction. There are two parameters in association

rule mining:

support(ti, tj) =
#tagSent containing (ti and tj)

#tagSent

confidence(ti ⇒ tj) =
#tagSent containing (ti and tj)

#tagSent containing ti

340

where ti and tj are two different tags, and tagSent is a tag

sentence. The support value measures how frequent the two

tags co-occur in all the tag sentences. The confidence value

measures the proportion of the tag sentences containing both

ti and tj compared with all the tag sentences containing ti.
If the support value and confidence value of a tag pair

{t1, t2} are above the respective threshold tsup and tconf ,

we obtain an association rule t1 ⇒ t2. Given the mined

association rules between tags, we construct a tag correla-

tion graph. The tag correlation graph is an undirected graph

G(V,E), where the node set V contains the tags appearing

in the association rules, and the edge set E contains edges

< t1, t2 > if the two tags has the association rule t1 ⇒ t2,

t2 ⇒ t1 or both.

The tag correlation graph captures important relational

knowledge between relevant technologies. Fig. 4 shows an

example of tag correlation graph. Note that this graph is only

a very small portion of the entire tag correlation graph that

is mined from Stack Overflow data dump (see Section IV).

For better observation, we apply community detection meth-

ods [22] to the graph so that tags in one community are

in the same color. We can see that each tag community

has at least one center tag which is usually a programming

language or platform, and each community contains tags

(e.g., libraries, frameworks, tools, concepts, databases) that are

highly correlated with that programming language or platform.

B. Mining Categorical Knowledge

In Fig. 4, we can see that the tags can be of different

categories, such as programming language, library, framework,

tool, IDE, operating systems, etc. To determine the category of

a tag, we resort to the tag definition in the TagWiki of the tag.

The TagWiki of a tag is collaboratively edited by the Stack

Overflow community. Although there are no strict formatting

rules in Stack Overflow, the TagWiki description usually starts

with a short sentence to define the tag. For example, the

tagWiki of the tag iOS starts with the sentence “iOS is a

mobile operating system developed by Apple”. Typically, the

first noun phrase just after the be verb defines the category of

the tag. For example, from the tag definition of iOS, we can

learn that the category of iOS is operating system.

Based on this heuristic, we use the NLP methods (similar

to the methods used in [12] for named entity recognition)

to extract such noun phrase from the tag definition sentence

as the category of a tag. Given the tagWiki of a tag in

Stack Overflow, we extract the first sentence of the TagWiki

description, and clean up the sentence by removing hyperlinks

and brackets such as “{}”, “()”. Then, we apply Part of

Speech (POS) tagging and phrase chunking to the extracted

sentence. POS tagging is the process of marking up a word in

a text as corresponding to a particular part of speech, such as

common noun, verb, adjective. Phrase chunking is the process

of segmenting a sentence into its subconstituents, such as noun

phrases, verb phrases. We use the Python NLTK library8 for

8http://www.nltk.org/ modules/nltk/tag.html

POS tagging9 and phrase chunking [23]. Fig. 5 shows the

results for the tag definition sentence of iOS. Based on the

POS tagging and phrase chunking results, we extract the first

noun phrase (NP) (operating system in this example) after the

be verb (is in this example). We use this noun phrase as the

category of the tag. That is, the category of iOS is operating
system.

With this method, we obtain 318 categories for the 19,573

tags (about 54% of all the tags that have TagWiki). We manu-

ally normalize these 318 categories labels, such as merging

operating system and os as os, normalizing uppercase and

lowercase (e.g., API and api). As a result, we obtain 167

categories.

Although the above method obtains the tag category for

the majority of the tags, the first sentence of the TagWiki of

many tags is not formatted as “tag be noun phrase” form. For

example, the first sentence of the TagWiki of the tag itext is

“Library to create and manipulate PDF documents in Java”. As

there is no be verb in this sentence, the above NLP method

cannot return a noun phrase for the tag category. We use a

dictionary look-up method to determine the category of such

tags. Specially, we use the 167 categories obtained using the

above NLP method as a dictionary to recognize the category of

the tags that have not been categorized using the NLP method.

Given an uncategorized tag, we scan the first sentence of the

tag’s TagWiki from the beginning, and search for the first

match of a category label in the sentence. If a match is found,

the tag is categorized as the matched category. For example,

the tag itext is categorized as library using this dictionary look-

up method. Using the dictionary look-up method, we obtain

the category for 11,059 more tags.

Note that we cannot categorize some (less than 15%) of the

tags using the above NLP method and the dictionary look-

up method. This is because these tags do not have a clear

tag definition sentence, for example, the TagWiki of the tag

richtextbox states that “The RichTextBox control enables you

to display or edit RTF content”. This sentence is not a clear

definition of what richtextbox is. Or no category match can be

found in the tag definition sentence of some tags. For example,

the TagWiki of the tag carousel states that “A rotating display

of content that can house a variety of content”. Unfortunately,

we do not have the category “display” in the 167 categories

we collect using the NLP method. When building analogical-

libraries knowledge base, we ignore these uncategorized tags

as potential candidates.

C. Learning Tag Embeddings

Word embeddings are low-dimensional vector representa-

tions of words that are built on the assumption that words with

similar meanings tend to present in similar contexts. Recently,

Mikolov et al. [9], [7] demonstrate that the word embeddings

encode similarities between pairs of words, for example,

the gender relation exhibited by the pairs “man:woman”,

9https://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank
pos.html

341

����

���

���	���

���

���

��

�����	����

��

�����	��	

�����	��	�����

�����������

��	���

����

��	�

�	����

�����	��
����

����
�����

����

��������

���
��	����

�����	���

�����

�!!

���

���	����������

�����	��	����"

�����������������

���

�	������

������
����

���������������
�����������

������ ���

��������������#

�����������

����

��	����
��������

���

�����
�����
�

� �	��� ����"

������	�����

������

�
���

����

�����

���������������

������
���������

��

�	

����	���� �������

���$�����
�

������

##�������������

 ���

���

	���

�����
��������	�����

�����

��������

������	�������	��

��������

�		������

�����	���

��	�%�	

����	���

��������	�

������

�������������	�

����	��	���

��	�������
��

��	������

��������!!
� �

�������������

������

����������� ���	�����������	

��	���

���

��������

�����
��

���������

���

�����	����� �������

�������

������

	�������	������
	�������	�����
����

�����	������

������

������������

���������

������

�����
	����

���	����������

����	����� ���	�	

���	�����	�������

����

���

����

��������	�����	$

�����

��	���
�

���������

���

�!!&&

�
�����������

�
�

����
���������

��	���

������

���

����	���

�������

���

��	���

�� ����

��	��	������
����

�������	������

���"

 ��

����
�������

��	���������

��	�����

���

�������$

��
������	���	�

���	������������$

���

����

� �������
���

�		���

����������	

�������$��	�������

������

���������'
	���������

��������������

� ���

������
%�����	�����	$

�����

��������������'

�����

���

�����������

 ���

��	�$�

������

�������

�����������������

������	
�

���������	���

��	��������

������#
��$����

���

�����	

�����	����������

���	������������

���������������

������

���	����������

��������

�������$���

��	�

���#��

�����������
����������������&�

��	���������	�

	$$$
�����

������

������

Fig. 4. An example of tag correlation graph

S

NP

NNP

Apple

IN

by

VBD

developed

NP

NN

system

NN

operating

JJ

mobile

DT

a

VBZ

is

NP

NNS

iOS

Fig. 5. POS tagging and phrase chunking results of the definition sentence
of the tag iOS

word embedding of t�

�� t� t� ��

t�

Fig. 6. The continuous skip-gram model. It predicts the surrounding words
given the center word.

“king:queen”, the capital − of relation in “Paris:France”,

“Madrid:Spain”. Such similarities are referred to as linguistic
regularities by Mikolov et al. and as relational similarities
by Turney [10]. Remarkably, Mikolov et al. show that such

relations are reflected in vector offsets between word pairs

(e.g., man − woman ≈ king − queen, Paris − France ≈

Madrid−Spain), and that by using simple vector arithmetic

one could apply the relation and solve analogy questions of

the form “a is to A as ? is to B” in which the nature of the

relation is hidden. That is, the identity of the unknown word

“?” can be inferred from the words whose word embedding is

most similar (e.g., by cosine similarity) to the vector a−A+B,

for example, king for man− woman+ queen, Madrid for

Paris− France+ Spain).

In our approach, give a corpus of tag sentences, we use

continuous skip-gram learning algorithm [7] to learn the word

representation of each tag using the surrounding context of

the tag in the corpus of tag sentences. In the resulting word

embedding space, the vector offsets between analogical li-

braries and their corresponding programming languages would

exhibit relational similarity, for example, nltk − python ≈
opennlp − java. Thus, given a library (e.g., python’s nltk),

we can infer analogical libraries for a programming language

(e.g., java) as nltk for python by a K-nearest-neighbor search

for the tags (e.g., opennlp) whose word representation is the

most similar to the vector nltk−python+java in the resulting

word embedding space.

Continuous skip-gram model [7] is a recently proposed

algorithm for learning word representations using a neural

network model. As illustrated in Fig. 6, the objective of the

continuous skip-gram model is to learn the word representation

of each word that is good at predicting the co-occurring words

in the same sentence. Specifically, given a sequence of train-

ing text stream t1, t2, ..., tk, the objective of the continuous

skip-gram model is to maximize the following average log

probability:

L =
1

K

K∑

k=1

∑

−N�j�N,j �=0

log p(tk+j |tk) (1)

342

where tk is the central word, tk+j is its surrounding word

with the distance j, and N indicates the context window size

to be 2N + 1. In our application of the continuous skip-gram

model, a tag sentence is a training text stream, and each tag is

a word. As tag sentence is short (has at most 5 tags), we set

N at 2 in our approach. That is, the context window contains

all other tags as the surrounding words for a given tag.

The probability p(tk+j |tk) in Eq. 1 can be formulated as a

log-linear softmax function which can be efficiently solved by

the negative sampling method [7]. After the iterative feed-

forward and back propagation, the training process finally

converges, and each tag obtains a low-dimension vector as

its word representation (i.e., tag embedding) in the resulting

vector space.

D. Building Analogical-Libraries Knowledge Base

Given the relational and categorical knowledge of the tags

and the tag embeddings of the tags, we build a knowledge

base of analogical libraries as follows.

In our approach, the library tags broadly refer to the tags

whose categories are library, framework, api, toolkit, wrapper,

and so on10. This is because the meaning of these categories

is often overlapping, and there is no consistent rule for the

usage of these terms in the TagWiki. For example, in Stack

Overflow’s TagWiki, junit is defined as a framework, google-
visualization is defined as an API, and wxpython is defined as

a wrapper. All these tags are referred to as library tags in our

approach.

Given a library tag t1, we first examine its correlated tags to

determine the programming language tag PL1. Let PL2 be a

programming language tag which can be the same as PL1 or

be different from PL1. Let vec(x) be the tag embedding of the

tag x. To find the analogical libraries t2 for the programming

language PL2 as the library t1 for the programming language

PL1, we find the library tags t2 whose tag embedding vec(t2)
is most similar (by cosine similarity in this work) to the vector

vec(t1)− vec(PL1) + vec(PL2), i.e.,

argmax
t2∈T

cos(vec(t2), vec(t1)− vec(PL1) + vec(PL2)) (2)

where T is the set of library tags excluding t1, and cos(u, v)
is the cosine similarity of the two vectors. In practice, there

could be several analogical libraries t2 for the programming

language PL2 as the library t1 for the programming language

PL1. Thus, we select library tags t2 with the cosine similarity

in Eq. 2 above a threshold tal.
Take the library nltk (a NLP library in python) as an

example. As shown in the Fig. 7, for python, our approach

returns the analogical libraries such as textblob and gensim;

for java, our approach returns the analogical libraries such as

stanford-nlp, opennlp, and gate.

Note that tags whose tag embedding is similar to the vector

vec(t1) − vec(PL1) + vec(PL2) may not always be library

10A complete list can be found at https://graphofknowledge.appspot.com/
libCategory

tags. For example, tag embeddings of the tags nlp, named-
entity-recognition and language-model are similar to the vector

vec(nltk)−vec(python)+vec(java). These tags are relevant

to the nltk library as they refer to some NLP concepts and

tasks, but they are not analogical libraries to the nltk. In our

approach, we rely on the category of tags (i.e., categorical

knowledge) to return only library tags.

The returned library tags sometimes include libraries that

are not for the given programming language PL2. For ex-

ample, beautifualsoup is a python library for html parsing

and web scraping. To find analogical libraries for java as the

library beautifualsoup for python, by Eq. 2 we would obtain

some libraries, such as scraperwiki (a library for ruby, python

and php), nokogiri (a library for ruby), and lxml (a library

for python). Although these libraries support similar features

(e.g., html parsing, web scraping) to the beautifulsoup, they

are not libraries for java. In our approach, we rely on the

correlation between a library and the programming language(s)

(i.e., relational knowledge) to select the libraries for a given

programming language.

IV. TOOL SUPPORT

This section describes the proof-of-concept implementation

of our approach and provides the initial usage data of the tool

by public users.

A. Tool description

We develop a web application called SimilarTech (https:

//graphofknowledge.appspot.com/similartech). It takes as input

a library name, and recommends libraries analogical to the

given one for different programming languages. The backend

of SimilarTech is an analogical-libraries knowledge base built

with the latest Stack Overflow data dump that contains Stack

Overflow post data from July 31st, 2008 to Aug 16th, 2015.

This knowledge base can be automatically updated periodical-

ly as the new data dump is released.

The data dump contains 9,970,064 questions and 41,856

different tags. As some infrequent or emerging tags do not

have corresponding TagWiki, we collect in total 36,197 tags

that have TagWiki in our dataset for mining relational and

categorical knowledge of tags and for learning tag embed-

dings. Among 36,197 tags in our dataset, 7,783 tags are

categorized as library tags. We use the famous implementation

of continuous skip-gram algorithm [7] in Word2Vec11 to learn

tag embeddings. We set tag embedding dimension at 200. In

the current implementation, our web application recommend

analogical libraries for the top-six most frequently-asked pro-

gramming languages in Stack Overflow, i.e., java, javascript,
c#, php, python and c++.

Fig. 7 shows a screen shot of our web application. Given

a library, our tool attempts to recommend analogical libraries

(with the similarity to the given library above the minimal

similarity threshold tal = 0.412) for the six programming

11https://code.google.com/p/word2vec/
12We experimentally select this value as lower threshold leads to more

errors while higher one results in fewer results.

343

Fig. 7. The scrrenshot of our website SimilarTech

languages. In the current implementation, SimilarTech presents

up to four libraries with the highest similarity for each pro-

gramming language. The rationale is that developers would be

unlikely to look through a long list of recommendations and

there are usually just a few most popular libraries for each

programming language. Note that listing up to four libraries

is only an implementation decision, not a limitation of our

approach.

Different programming languages may have different num-

bers of recommended analogical libraries. This is natural

because some programming languages have more alternatives

for a particular task, while others have less. In some cases, a

programming language may not have any analogical libraries

for the given library. For example, developers rarely use

javascript for machine learning tasks. Thus, there are no well-

known machine learning libraries written in javascript. For the

machine learning library weka, none of the javascript libraries

is similar enough (i.e., above the minimal similarity threshold

tal = 0.4) to the weka. In such cases, SimilarTech recommends

no libraries for that particular programming language.

For each recommended analogical library, SimilarTech
shows a brief definition extracted from the corresponding

TagWiki. Clicking a library name navigates to the analogical-

libraries page for the clicked library. This allows the user

to interactively explore the underlying analogical-libraries

knowledge base. SimilarTech also summarizes the number

of questions tagged with a library per month, and plots the

metrics over time in a so-called asking trend. The asking trends

of analogical libraries allow the user to easily compare the

amount of the questions for each library on Stack Overflow.

B. Tool feedback
We release our website to the public and post this news on

several programming-related websites (e.g., http://stackapps.

com/questions/6667/). According to the Google Analytics of

the website traffic, more than 300 users from 50 countries visit

our site, from Nov 11, 2015 to Nov 13, 2015 (i.e., during the

time we write this paper). These users on average browse 4.8

pages in each session and they browse 1,594 pages in total13.

Analysis of the site logs shows that users in total browse

302 libraries for analogical-libraries recommendation. The top-

ten most-frequently visited libraries are listed in Fig. 8. The

usage data of our website, albeit very limited, demonstrates

both the needs and the interests in such analogical-libraries

recommendation that our approach supports. As more usage

data is accumulated in the future, we will further investigate

usage patterns and recommendation usefulness from user

click-through data.
We would like to point out that, although fully-functional,

SimilarTech is a proof-of-concept prototype that we use to

facilitate data analysis and experiment with the approach.

This paper focuses on solving the data extraction and model-

ing challenge underlying analogical libraries recommendation.

Although the usage data provides some initial evidence of

the potential usefulness of our web application for finding

analogical libraries, we do not claim that SimilarTech could

be put in operation without additional engineering efforts.

13As most search engine robots do not activate Javascript, robot traffic is
not counted in Google Analytics [24].

344

Fig. 8. The top-ten most-frequently visited libraries on SimilarTech

V. EVALUATION

In this section, we evaluate the mined relational and categor-

ical knowledge of tags and the accuracy of analogical-libraries

recommendations. Then we zoom-into specific cases in which

our approach makes poor recommendation to understand the

limitations of our approach.

A. The Accuracy of Tag Categorization

We randomly sample 500 tags from 30,632 tags whose

categories can be determined using either the NLP method

or the dictionary look-up method (see Section III-B). We

manually examine the category of these 500 tags by reading

their corresponding TagWiki. Among these 500 sampled tags,

407 (81.4%) tags are correctly labeled by our proposed meth-

ods. According to our observation, two reasons lead to the

erroneous categorization. First, some tag definition sentences

are complex which can lead to erroneous POS tagging results.

For example, the tagWiki of the tag pyml states that ”PyML is

an interactive object oriented framework for machine learning

written in Python”. Our method recognizes object as the

category because it is the first noun after the be verb. Second,

the dictionary look-up method sometimes makes mistakes. For

example, the TagWiki of the tag honeypot states “A trap set

to detect or deflect attempts to hack a site or system”. Our

approach matches the system as the category of the honeypot.
As this work focuses on tags whose categories can be

regarded as library, such as library, framework, api, toolkit,
wrapper, etc., we further check the correctness of these library

tags in the sampled tags. Among the 500 sampled tags, there

are 96 tags whose category can be regarded as library. 81

out of these 96 tags (84.4%) are correctly categorized. The

accuracy of our tag categorization provides a solid basis for

the analogical-libraries reasoning tasks.

B. The Semantic Distance of Tag Correlations

To evaluate the mined relational knowledge of correlated

tags, we adopt the metric called “Google distance” [25], [26].

Google distance is a crowd-scale method to measure the

semantic distance between a set of words by analyzing search

engine data. The assumption is that the co-occurrence of a

set of words in the same queries is a good indicator of the

semantic distance between the words.

In this work, we use Google Trends [27] to evaluate the

semantic distance of the correlated tags in the mined tag

correlation graph. Google Trends is a public web service

that shows how frequent a particular search-term is searched

compared with the total search-volume in Google search.

Given a pair of correlated tags (e.g., <java, swing>) in the

tag correlation graph, we query the Google Trends with the

two tags as a search term (i.e., “java swing”). Google Trends

will provide the trend statistics for popular queries, and report

“no enough data” for less popular queries.

We randomly sample 1,000 pairs of tags (i.e., tag relations)

in our tag correlation graph. A small percentage of tag

relations (13.1%) are not present in Google Trends (i.e., no

enough data”). That is, these pairs of tags are not popular

queries according to Google Trends. However, a pair of tags

not present in Google Trend does not necessarily indicate

wrong tag relations. First, some tags of emerging techniques

(e.g., apiary.io) may not accumulate enough search volume

on Google. Second, the difference between tagging behavior

and search behavior also results in a small percentage of

tag pairs not present in Google Trend. For example, Stack

Overflow users always use javascript and video.js together to

tag questions, while web users search Google with video.js
only without javascript.

Among the 1,000 sampled tag relations, 137 are corre-

lations between a programming language and a library. We

further check the accuracy of these 137 library-programming-

language correlations. The results show that 88.3% of these

137 correlations appear in Google Trends. Overall, the mined

relational knowledge of tags can accurately represent the

semantic relationships between software-specific entities, in-

cluding programming languages and libraries.

C. The Quality of Analogical-Libraries Recommendation

We first describe the method and metric to evaluate the

accuracy of our analogical-libraries recommendation. Then,

we present the evaluation results.

1) Evaluation Procedure and Metrics: We randomly sam-

pled 100 libraries in our analogical-libraries knowledge base as

the test cases. These test-case libraries support a diverse set of

functionalities, such as visualization, NLP, machine learning,

searching, testing, and so on.

Our approach is inspired by the use of word embeddings to

solve analogy questions of word pairs [9]. The original word-

pair analogy tasks includes two sets: semantic analogies such

as Paris − France ≈ ? − Spain and syntactic analogies

such as quickly − quick ≈ ? − slow. In these work-pair

analogy tasks, there is only one correct answer, for example

Madrid for Paris− France ≈ ?− Spain, and slowly for

quickly − quick ≈ ?− slow.

In contrast, our analogical-libraries task may return several

analogical libraries for a given library, as there is rarely only

one solution in software engineering context. For example, for

the NLP library nltk for Python, there are several comparable

345

libraries for Java, such as standford-nlp, opennlp, gate. There-

fore, we use the Precision@k metric [28], [29] to evaluate the

accuracy of analogical-libraries recommendation. Note that as

the set of all analogical libraries is literally unknown, it is

impossible to evaluate Recall@k.

As there is no ground truth of analogical libraries, we

have to manually check each recommended library for a

given test-case library. We examine information from library

official website, TagWiki, wikipedia, and other available online

information. If the recommended library can provide com-

parable features as the given test-case library, we consider

the recommendation as correct. Note that we do not consider

relevant libraries as correct recommendations. For example,

SimilarTech recommends the powermock and mockito for the

library junit. powermock and mockito are mocking framework

for testing. Although powermock and mockito are relevant to

the library junit, we do not consider them as analogical library

to junit, because they do not provide comparable features as

the given library.

For a given test-case library, let’s assume that SimilarTech
recommends at least one library for n (1 ≤ n ≤ 6)

programming languages. Let correcti@k be the number of

correct recommendations in the top-k recommended libraries

for a particular programming language PLi (1 ≤ i ≤ n).

The Precisioni@k (k = 1, 2, 3, 4, 5 in this evaluation14)

for the programming language PLi is correcti@k/k. We

compute the Precision@k of the overall analogical-libraries

recommendation as:

n∑

i=1

Precisioni@k

n

i.e., the average of the Precisioni@k metrics of all the pro-

gramming languages with at least one recommended libraries.

2) Accuracy: In our experiments on analogical-libraries

recommendation, we compare the pure tag embedding based

recommendation (i.e., the baseline method w2v (word to vec-

tor)) with the relational-knowledge powered recommendation

(w2v + r kg), the categorical-knowledge powered recom-

mendation (w2c + c kg), and the relational- and categorical-

knowledge powered recommendation (w2c+ rc kg).

Fig. 9 illustrates the Precision@k of the four recommen-

dation methods. We can see that the pure tag embedding

based recommendation performs poorly. The recommendation

accuracy by tag embedding alone is less than 30%. This is

because tag sentences have much noisy context information,

compared with natural language sentences. Incorporating re-

lational and categorical knowledge of tags into analogical-

libraries recommendation can significantly improve the accura-

cy of the recommendation. Categorical knowledge of tags can

boost the accuracy more than relational knowledge of tags.

Incorporating both knowledge yields the best accuracy.

When incorporating both knowledge, the Precision@1 is

81%, and the Precision@5 is still reasonably high at 67%. That

14we use a small k value because developers are unlikely to look through
a long recommendation list

Fig. 9. Performance of using relational knowledge and categorical knowledge
on analogical-libraries recommendation based on our proposed approach

is, given a test-case library, the top-1 library that SimilarTech
recommends for each programming language is high likely an

analogical library, and the majority of the top-5 recommended

libraries for each programming language are analogical li-

braries. Our results suggest that integrating domain-specific

knowledge with word embeddings can enhance analogical

reasoning tasks in software engineering context.

D. Limitations of Our Approach

Although our approach can make accurate analogical-

libraries recommendations in most cases, as the first work

of this kind that combines word embeddings with domain-

specific knowledge for analogical reasoning tasks, we would

like to further investigate in which cases our approach cannot

make good recommendations. This will help us, as well as

other researchers and designers of similar systems, understand

the limitations of our approach and address them in the future.

To that end, we investigate the test cases for which the

Precision@5 metrics are below 0.2, i.e., almost all the recom-

mended libraries for a given test-case library are incorrect. We

find that such test-case libraries fall into two categories: either

a full-stack framework that supports a wide range of features

or a library that provides a very specific feature or support

some unique features for a particular language.

For the first case, an example is ruby-on-rails (a web

application framework for Ruby). We expect that the system

can recommend analogical framework such as node.js for

JavaScript, django for Python, and codeigniter for PHP. But

the recommendations by SimilarTech do not include any such

web application frameworks. The fundamental reason for such

poor recommendations is that neural network language models

assume that similar words share similar context such that word

embeddings can be learned from the surrounding context.

However, these full-stack frameworks can be used in very

diverse context, which leads to very diverse tag sentences.

As a result, in the resulting word embedding space, these

frameworks and their respective programming languages do

not exhibit relational similarity (or linguistic regularity) which

is necessary for analogical reasoning. Thus, our approach fails

to recommend analogical web application frameworks for the

346

ruby-on-rails.

For the second case, examples include jnotify and mako.

jnotify is a Java library that allow Java application to listen to

file system events. mako is a template library providing non-

XML syntax which compiles into Python modules and con-

ceptually can be considered as an embedded Python language.

Due to their very specific or language-dependent features, it is

unlikely that other programming languages have comparable

libraries.

To sum up, our approach is not suitable for finding ana-

logical libraries for feature-rich, full-stack frameworks or

language-dependent, unique libraries.

VI. CONCLUSION AND FUTURE WORK

Third-party libraries assist developers in finishing software

engineering tasks more efficiently without the need to reinvent

the wheels. However, due to many reasons such as lack of

active maintenance of the libraries being used or language

migration, developers often need to find some alternative and

comparable libraries to replace the libraries they are already

familiar with. Although developers can find useful information

in community-curated list, blogs and Q&A posts on the Web,

the information is likely to require tedious and time-consuming

browsing and aggregation, or is likely to be out of date to

mislead developers especially the novice.

In this paper, we propose an automated technique to rec-

ommend analogical libraries across different programming

languages. We adopt the cutting-edge deep learning method

in NLP applications (also known as word embeddings) to the

software engineering data. We further enhance the original

word embedding technique with software-engineering domain

knowledge to better answer analogy questions in software

engineering context. Given a library, our approach can rec-

ommend several most salient analogical libraries for different

programming languages.

We evaluate all the components of our approach, including

the quality of the mined relational and categorical knowl-

edge, and the quality of the analogical-libraries recommen-

dation. Our approach achieves very promising results for

analogical-libraries recommendation (Precision@1=0.81 and

Precision@5=0.67). We also implement our approach in a web

application15 and release the web application for public use

and evaluation.

In the future, we will improve our web application and

analyze the website traffic and user behaviors in our website

to enhance the accuracy of analogical-libraries recommenda-

tion. Furthermore, we are very interested in extending our

approach to fine-grained level of analogy relationships, for

example, mining analogical APIs across different libraries or

programming languages in Q&A discussions or other online

resources (e.g., Github). Tens of thousands of API analogy

questions can be found on Stack Overflow, which indicates

the urgent needs for the automatic tool support at the API

level. We believe the ability to easily find analogical APIs and

15https://graphofknowledge.appspot.com/similartech

their usage can boost developers’ productivity and efficiency

when they migrate from one programming language to another

unfamiliar language.

Exiting studies of Stack Overflow data focus on mining

discussion topics or recovering traceability between software

project data and Stack Overflow posts. In contrast, our work

demonstrates the feasibility of turning software engineering

social content on Stack Overflow into a knowledge base of

software-specific entities and their relationships to improve

developers’ life on the Internet. Apart from analogical-libraries

recommendation, another contribution of this work is an initial

knowledge graph that captures the domain-specific relational

and categorical knowledge of tens of thousands of software-

specific entities. In the future, we will extend this initial

knowledge graph with more software-specific entities (e.g.,

APIs) and richer set of relationships between entities. We are

interested in entity-centric search systems that can exploit this

knowledge graph for not only displaying additional facts and

direct information about the central entity in a query, but also

to provide extended suggestions for users who would like to

browse. This work can be considered as the very first step

towards our long-term goal.

ACKNOWLEDGMENT

The authors would like to thank Han Lei for the UI design

of our website. This work was partially supported by MOE

AcRF Tier1 Grant M4011165.020.

REFERENCES

[1] F. Thung, D. Lo, and J. Lawall, “Automated library recommendation,”
in Reverse Engineering (WCRE), 2013 20th Working Conference on.
IEEE, 2013, pp. 182–191.

[2] C. Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration graphs,”
in Reverse Engineering (WCRE), 2012 19th Working Conference on.
IEEE, 2012, pp. 289–298.

[3] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
api mapping for language migration,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1. ACM, 2010, pp. 195–204.

[4] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical learning approach for mining api usage mappings for code
migration,” in Proceedings of the 29th ACM/IEEE international confer-
ence on Automated software engineering. ACM, 2014, pp. 457–468.

[5] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[6] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming q&a in stackoverflow,” in Soft-
ware Maintenance (ICSM), 2012 28th IEEE International Conference
on. IEEE, 2012, pp. 25–34.

[7] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[8] W. Chen, Y. Zhang, and M. Zhang, “Feature embedding for dependency
parsing,” in Proceedings of the International Conference on Computa-
tional Linguistics, 2014.

[9] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in contin-
uous space word representations.” in HLT-NAACL, 2013, pp. 746–751.

[10] P. D. Turney, “Similarity of semantic relations,” Computational Linguis-
tics, vol. 32, no. 3, pp. 379–416, 2006.

[11] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
1994, pp. 487–499.

347

[12] J. Kazama and K. Torisawa, “Exploiting wikipedia as external knowl-
edge for named entity recognition,” in Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), 2007, pp.
698–707.

[13] D. M. L. Xu, R. Bodık, and D. Kimelman, “Jungloid mining: Helping
to navigate the api jungle,” in POPL, 2005.

[14] S. Thummalapenta and T. Xie, “Parseweb: a programmer assistant for
reusing open source code on the web,” in Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering. ACM, 2007, pp. 204–213.

[15] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and
recommending api usage patterns,” in ECOOP 2009–Object-Oriented
Programming. Springer, 2009, pp. 318–343.

[16] W.-K. Chan, H. Cheng, and D. Lo, “Searching connected api subgraph
via text phrases,” in Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering. ACM,
2012, p. 10.

[17] F. Thung, S. Wang, D. Lo, and J. Lawall, “Automatic recommendation of
api methods from feature requests,” in Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on. IEEE, 2013,
pp. 290–300.

[18] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A
statistical semantic language model for source code,” in Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering.
ACM, 2013, pp. 532–542.

[19] C. Teyton, J.-R. Falleri, and X. Blanc, “Automatic discovery of function
mappings between similar libraries,” in Reverse Engineering (WCRE),
2013 20th Working Conference on. IEEE, 2013, pp. 192–201.

[20] C. Xu, Y. Bai, J. Bian, B. Gao, G. Wang, X. Liu, and T.-Y. Liu, “Rc-net:
A general framework for incorporating knowledge into word represen-
tations,” in Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management. ACM, 2014,
pp. 1219–1228.

[21] G. Zhou, T. He, J. Zhao, and P. Hu, “Learning continuous word
embedding with metadata for question retrieval in community question
answering,” in Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics Beijing, China, 2015, pp.
250–259.

[22] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[23] S. Bird, “Nltk: the natural language toolkit,” in Proceedings of the
COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics, 2006, pp. 69–72.

[24] “Google analytics policy,” https://support.google.com/analytics/answer/
1315708?hl=en.

[25] R. L. Cilibrasi and P. Vitanyi, “The google similarity distance,” Knowl-
edge and Data Engineering, IEEE Transactions on, vol. 19, no. 3, pp.
370–383, 2007.

[26] R. Gligorov, W. ten Kate, Z. Aleksovski, and F. Van Harmelen, “Using
google distance to weight approximate ontology matches,” in Proceed-
ings of the 16th international conference on World Wide Web. ACM,
2007, pp. 767–776.

[27] “Google trends,” https://www.google.com.sg/trends/.
[28] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to infor-

mation retrieval. Cambridge university press Cambridge, 2008, vol. 1.
[29] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec: an

enhanced tag recommendation system for software information sites,” in
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 2014, pp. 291–300.

348

