
myjournal manuscript No.
(will be inserted by the editor)

What’s Spain’s Paris? Mining Analogical Libraries from Q&A
Discussions

Chunyang Chen · Zhenchang Xing · Yang Liu

Received: Aug 31, 2017 / Accepted: Sep 5, 2018

Abstract Third-party libraries are an integral part of many software projects. It often happens
that developers need to find analogical libraries that can provide comparable features to the li-
braries they are already familiar with for different programming languages or different mobile
platforms. Existing methods to find analogical libraries are limited by the community-curated list
of libraries, blogs, or Q&A posts, which often contain overwhelming or out-of-date information. In
this paper, we present a new approach to recommend analogical libraries based on a knowledge
base of analogical libraries mined from tags of millions of Stack Overflow questions. The novelty of
our approach is to solve analogical-library questions by combining state-of-the-art word embedding
technique and domain-specific relational and categorical knowledge mined from Stack Overflow.
Given a library and a recommended analogical library, our approach further extracts questions and
answer snippets in Stack Overflow about comparison of analogical libraries, which can potentially
offer useful information scents for developers to further their investigation of the recommended
analogical libraries. We implement our approach in a proof-of-concept web application and more
than 34.8 thousands of users visited our website from November 2015 to August 2017. Our evalu-
ation shows that our approach can make accurate recommendation of analogical libraries. We also
demonstrate the usefulness of our analogical-library recommendations by using them to answer
analogical-library questions in Stack Overflow. Google Analytics of our website traffic and analysis
of the visitors’ interaction with website contents provide the insights into the usage patterns and
the system design of our web application.

1 Introduction

Third-party libraries are an integral part of many software systems. Developers do not need to
reimplement the wheels by using libraries which provide robust and efficient functionalities. Among
1,008 projects in GitHub they investigate, 93.3% of which use third-party libraries, at an average of
28 third-party libraries per project (Thung et al, 2013a). As a software project and the libraries used
in the project inevitably evolve in their own direction, developers sometimes need to replace some
currently-used libraries by another ones. For example, the library that a project currently uses is
no longer under active development, or lacks certain desired features, or cannot satisfy performance
requirements. In such cases, some developers want to find some good replacements (Teyton et al,
2012). In other cases, they switch to a new programming language, but they would like to “reuse”

Chunyang Chen
Faculty of Information Technology, Monash University, Australia
E-mail: chunyang.chen@monash.edu

Zhenchang Xing
College of Engineering & Computer Science, Australian National University, Australia
E-mail: zhenchang.xing@anu.edu.au

Yang Liu
School of Computer Science and Engineering, Nanyang Technological University, Singapore
E-mail: yangliu@ntu.edu.sg

2 Chunyang Chen et al.

Tags

language os concept library

Fig. 1 An example of analogical-library question in Stack Overflow.

their good experience with some libraries that they are familiar with (Zhong et al, 2010; Nguyen
et al, 2014) (such as the example shown in Fig. 1). It would be desirable to find analogical libraries
that are best suited for the new programming language that the developer switches to.

Developers can search the Web for analogical libraries that can provide features comparable to
the libraries they are already familiar with. They could find useful information in some community-
curated list of libraries, such as unit testing framework on Wikipedia, and Awesome PHP on Github.
These library lists are usually very comprehensive, but they often contain some obsolete or not-
widely-adopted libraries (Wu et al, 2017) that may distract developers. For example, in the list of
unit testing framework on Wikipedia, “Test manager” 1 developed in 1993 is still in the list, but it
cannot even be searched up on the Internet. Developers may also find useful information in blogs
(e.g., “Beyond JUnit – Testing Frameworks alternatives”) or forum posts (e.g., “Alternatives to
JUnit”). Blogs and forum posts are usually more focused, but they are often opinion-based and
many past posts also contain out-of-date information. When developers cannot find satisfactory
information on the Internet or want to confirm their search findings, they may ask on Q&A web
sites like Stack Overflow (e.g., Fig. 1), but may not get the immediate answers.

Although many research works have been carried out for mining similar code snippets (Nguyen
et al, 2013), functions (Teyton et al, 2013), or APIs (Zhong et al, 2010; Nguyen et al, 2014),
finding analogical libraries for different programming languages or mobile platforms has been rarely
investigated. A key challenge in analogical-library recommendation is that the program analysis
(based on code) or information retrieval (based on text) methods cannot properly model the
functionalities of libraries for reasoning their analogical relations.

In this paper, we present a new approach to find analogical libraries. Our approach is based on
the empirical findings showing that taken in aggregate posts on Stack Overflow act as a knowledge
repository of developers’ practices and thoughts (Barua et al, 2014), and that the main technologies
or constructs that a question revolves around can usually be identified from question tags (Nasehi
et al, 2012) (see Fig. 1). Instead of listing dozens of libraries or relying on blogs or Q&A posts,
our approach recommends analogical libraries based on a knowledge base of analogical libraries
mined from tags of millions of Stack Overflow questions. This knowledge base can be periodically
updated with new Stack Overflow questions, and thus is like forever evolving “blog posts” about
good analogical libraries to the libraries that one is familiar with.

Our approach is motivated by the recent success of neural network language models in Natural
Language Processing (NLP) applications (Mikolov et al, 2013b; Chen et al, 2014). Recently, neural
network language models are demonstrated (Mikolov et al, 2013c; Turney, 2006) to be able to learn
word representations (or word embeddings) that can be exploited to solve analogy questions of the
form “a is to A as ? is to B”, for example, “Paris is to France as ? is to Spain”. The unknown word
“?” can be inferred from the words (e.g., Madrid) whose word embedding is most similar to the
resulting vector of vector arithmetic a−A + B (e.g., Paris− France + Spain)

In our approach, we consider tags of a Stack Overflow question as an artificial tag sentence,
and each tag as a word in the sentence. According to Stack Overflow policy2, tags in a tag sentence
are ordered by the frequency of a tag at the time a question is posted. As illustrated in Fig. 2,

1 https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#cite_note-496
2 https://meta.stackexchange.com/questions/77808/does-it-matter-the-order-you-tag-your-question

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://github.com/ziadoz/awesome-php
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
http://www.javacodegeeks.com/2012/04/beyond-junit-testing-frameworks.html
http://www.coderanch.com/t/95225/Testing/Alternatives-JUnit
http://www.coderanch.com/t/95225/Testing/Alternatives-JUnit
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#cite_note-496

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 3

python nltk
python nlp nltk pos-tagger
python nlp nltk tf-idf
python nlp nltk tokenize
python nltk stanford-nlp
python nltk parsing chunking

.

.

.

java opennlp
java nlp opennlp pos-tagger
java nlp opennlp tf-idf
java nlp opennlp tokenize
java opennlp stanford-nlp
java opennlp parsing chunking

.

.

.

Tag sentences

Fig. 2 The similar context of Python’s nltk and Java’s opennlp in tag sentences. However, it is important to note
that analogical libraries themselves rarely co-occur in the same tag sentences.

analogical libraries (such as Python’s nltk and Java’s opennlp) often share similar context in tag
sentences, such as common concepts and techniques. Given a corpus of tag sentences derived from
Stack Overflow questions, we use continuous skip-gram learning algorithm (Mikolov et al, 2013b)
to learn the tag embedding of each tag using the surrounding tags of a tag in the corpus of
tag sentences. Given a library (e.g., python’s nltk), we can then reduce the problem of finding
analogical libraries for a programming language (e.g., java) as nltk for python to a K-nearest-
neighbor search for the tags (e.g., opennlp) whose word representation is the most similar to the
vector nltk − python + java in the resulting word embedding space. It is important to note that
analogical libraries are rarely used to tag the same Stack Overflow questions. Therefore, traditional
association rule mining methods that mine co-occurring items in the same transactions cannot
discover such analogical relationships.

However, directly applying neural network language models to the problem of learning tag
embeddings in tag sentences, as opposed to learning word representations in natural language
sentences, brings unique challenges. First, contrary to natural language where linguistic rules and
notions of words and sentences are clearly defined, question tags on Stack Overflow are composed of
only up-to five terms. There is no existing notion of linguistic rules equivalent to natural language
domain. Second, Stack Overflow community relies on collaborative editing to curate post quality,
including question tags (Chen et al, 2017a). However, considering the sheer amount of questions
posted everyday, tags of some questions (for example newly posted questions that do not receive
much attention) could still be noisy such that they cannot reflect the inherent relationship between
tags and may further mislead the learning process.

To address these challenges, we incorporate domain-specific relational and categorical knowl-
edge into tag embeddings in order to produce better mappings of analogical libraries. In our
approach, relational knowledge encodes the correlation between tags. We use association rule min-
ing (Agrawal et al, 1994) to mine the correlation between pairs of tags from tag co-occurrence pat-
terns in millions of Stack Overflow questions. Categorical knowledge encodes the category of tags
(e.g., library, framework, concept, platform, database, and so on). We use Part-of-Speech tagging
and phrase chunking methods (Kazama and Torisawa, 2007) to analyze the TagWiki description
of each tag to determine the category of the tags. Both relational and categorical knowledge can
serve as valuable external information to help differentiate library-language/platform pairs with
analogical relationships.

Our previous works (Chen et al, 2016a; Chen and Xing, 2016a) implement the proposed ap-
proach for recommending analogical libraries for different programming languages. In this paper,
we extend our previous work for analogical-libraries recommendation for different mobile platforms
such as iOS, Android and Windows-Phone. Furthermore, after obtaining a list of recommended
libraries, developers usually need to further investigate which recommended library is the most suit-
able one for their work. To that end, they need to search for information about the recommended
libraries, such as active versions, runtime performance, reliability, documentation and available
code examples. To assist developers in such further investigation, we develop a keyword-matching
method to extract comparison questions and answer snippets in Stack Overflow discussions about

4 Chunyang Chen et al.

a pair of analogical libraries. These comparison snippets may provide useful information scents
about different aspects of recommended libraries, with which developers can further search more
information about some recommended analogical libraries using search engines.

We implement our approach in a proof-of-concept web application (https://graphofknowledge.
appspot.com/similartech) for programming-language based recommendation and (https://
graphofknowledge.appspot.com/similarmobiletech) for mobile-platform based recommenda-
tion. The application takes as input a library name and recommends analogical libraries for dif-
ferent programming languages or different mobile platforms. We update the backend analogical
library database using our approach with the latest Stack Overflow Data Dump related on Dec,
2017. We evaluate the analogical-libraries recommendations by our approach for randomly selected
140 libraries across different programming languages and mobile platforms. The results show that
our approach can make accurate recommendation of analogical libraries for both different pro-
gramming languages and mobile platforms. Furthermore, Google Analytics of our website traffic
provides initial evidence of the potential usefulness of our web application for software developers.
At the time of this submission (August 2017), more than 34.7 thousand users from 168 countries
have visited our site for analogical libraries.

In addition to the contributions in our previous work (Chen et al, 2016a), this paper makes
new contributions as follows:

– To demonstrate the generality of our approach, we extend our approach to analogical-libraries
recommendation for different mobile platforms and evaluate the accuracy of mobile-platform-
based recommendation. We also analyze the performance differences between programming-
language based recommendation and mobile-platform based recommendation.

– To assist developers in their further investigation of the recommended analogical libraries,
we develop a keyword-matching method to extract comparison questions and answer snippets
in Stack Overflow that may provide useful information scents when developers discuss and
compare certain pair of analogical libraries. We conduct a user study to evaluate whether the
extracted comparison snippets contain useful information that developers may be interested in
when comparing analogical libraries.

– We comparatively study the effectiveness of two popular word-embeddings techniques (contin-
uous skip-gram model and continuous bag-of-words model) for learning tag embeddings. Our
results show that continuous skip-gram model outperforms continuous bag-of-words model.

– We evaluate the usefulness of our analogical-libraries recommendations by comparing our rec-
ommendations with user-provided answers to 70 analogical-libraries-related questions in Stack
Overflow. Our results show that most libraries in answers are covered by recommended libraries
using our approach.

– Our web application receives steady visits (on average 1.1K per month) since its launch in
November 2015. We log the user visit behavior and analyze the users’ logs for insights.

2 The Approach

Our approach takes as input the tags of each question in Stack Overflow and the TagWiki of
each tag, and produces as output a knowledge base of analogical libraries (Fig. 3). Our approach
considers the tags of a Stack Overflow question as an artificial tag sentence, and each tag of the
question as a word in the tag sentence. Given a set of Stack Overflow questions, we build a corpus of
tag sentences, one tag sentence per question. Given the corpus of tag sentences, we use association
pair mining (Agrawal et al, 1994) to mine the correlation among tags, especially the correlation
between a library and its associated programming language (Section 2.2), and use word embedding
techniques (e.g., continuous skip-gram model (Mikolov et al, 2013b) or continuous bag-of-words
model) to learn tag embeddings (Section 2.4). We develop POS tagging and phrase chunking
methods to analyze the tag definition in the TagWiki of each tag to determine the tag category
(Section 2.3). Tag embeddings and relational and categorical knowledge of tags are incorporated
to build the knowledge base of analogical libraries for different programming languages or mobile
platforms (Section 2.5). Given a query library, our approach returns analogical libraries based
on this knowledge base. Furthermore, to assist developers in their further investigation of the
recommended libraries with some useful information scents, our approach formulates queries for a

https://graphofknowledge.appspot.com/similartech
https://graphofknowledge.appspot.com/similartech
https://graphofknowledge.appspot.com/similarmobiletech
https://graphofknowledge.appspot.com/similarmobiletech

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 5

Association pair
mining

POS & Phrase
chunking & Rule

matching
Tag wiki

Tag
sentences

Vector
SpaceWord embedding

model

Relational
Knowledge

Categorical
Knowledge

Analogical‐library
knowledge base

Extract
analogical
libraries

Words match &
sentence selection

Comparison
questions &

answer snippets

Analogical
libraries

Query

Offline training

Posts in
Stack Overflow

Fig. 3 The overview of our approach

given pair of analogical libraries and search Stack Overflow posts for questions and answer snippets
that likely compare the two analogical libraries (Section 2.6).

2.1 Approach Input

We use Stack Overflow question tags as the input to our approach for the following reasons:

– First, question tags are the metadata of a question. Nasehi et al (2012) show that they represent
the main technologies or concepts that a question revolves around. That is, tags provide a
compact and meaningful representation of software engineering concepts and technologies that
developers are concerned with.

– Second, Stack Overflow has strict policy regarding tag usage and the creation and approval
of new tags. The community also constantly merges tag synonyms. Users must use a set of
community-approved tags, rather than using any arbitrary words to tag their questions. This
practice ensures the consistent use of the same tag to represent the same concept or technology.
In contrast, question titles and post contents are free text which is inevitably much more noisy.
For example, users may write “JavaScript” in many different forms, such as “js”, “java-script”,
or “javascrpt”. Such abbreviations, synonyms and misspellings are difficult to unify and they
will negatively influence the learning of tag embeddings due to the word sparsity issue.

– Third, question tags can be directly processed as software entities. However, it is a challenging
task to discriminate mentions of software entities (e.g., programming language or libraries) in
normal text. For example, given a sentence “you can use underscore in javascript”, we will need
robust named entity recognition and entity linking techniques (Ye et al, 2016a) to recognize
that “underscore” in the sentence actually refers to the software library “underscore.js”.

In this work, we are concerned with programming-language and library tags (see Section 2.3
for our method for determining tag categories). Programming languages and libraries can have
different versions. But when searching for analogical libraries, developers have to first know which
analogical library they may use. And then they can search more information and learn more about
the analogical libraries, for example, to determine which specific library version fits their needs the
best. Our approach aims to recommend analogical libraries, rather than specific library versions.
To that end, we normalize Stack Overflow tags with version numbers, such as “sql-server-2007”,
“asp.net-mvc-4”, “c++11”. Specifically, we remove the detailed number (also the hyphen before
number if applicable) but retain the core parts of the tag. After normalizing tags with version
numbers, we remove possible duplicates within the tag sentences, for example, an original tag
sentence “sql-server, visual-studio, sql-server-2008” will be reduced into “sql-server, visual-studio”.
Normalizing tags with version numbers increases the tagging frequencies of a library. This also
helps to alleviate the word sparsity issue for learning tag embeddings.”

6 Chunyang Chen et al.

ipadipad

iosios

androidandroid

javajava

tsqltsql

sqlsql

nhibernatenhibernate

c#c#

sql-serversql-server

sql-server-2008sql-server-2008

google-mapsgoogle-maps

stringstring

htmlhtml

jqueryjquery

oracleoracle

winformswinforms
.net.net

css3css3
shellshell

linuxlinux

databasedatabase

phpphpjquery-uijquery-ui

javascriptjavascript

boostboost

c++c++
jsonjson

android-layoutandroid-layout

sql-server-2005sql-server-2005

google-maps-api-3google-maps-api-3

joinjoin

gridviewgridview

selectselect
mysqlmysql

uitableviewcelluitableviewcell
uitableviewuitableview

githubgithub gitgit

jpajpaasp.net-mvc-4asp.net-mvc-4

asp.net-mvcasp.net-mvc

filefile

formsformsobjective-cobjective-c

divdiv

node.jsnode.js
expressexpress html5html5

web-servicesweb-services

iphoneiphone

wcfwcf

plsqlplsql

emailemail

database-designdatabase-design

apacheapache
.htaccess.htaccess

jspjsp

jarjar

hibernatehibernate webviewwebview

backbone.jsbackbone.js

java-eejava-ee

asp.net-mvc-3asp.net-mvc-3

xamlxaml

wpfwpf

regexregex

flashflash
actionscript-3actionscript-3

mavenmaven

listviewlistview

twitter-bootstraptwitter-bootstrap

functionfunction

arraylistarraylist

postgresqlpostgresql

razorrazor

genericsgenerics

dictionarydictionary

pythonpython

magentomagentopointerspointers

mod-rewritemod-rewrite

spring-mvcspring-mvcjsfjsf

core-datacore-data

visual-c++visual-c++
qtqt cc

visual-studiovisual-studio

vb.netvb.net

asp.netasp.net android-emulatorandroid-emulator

iframeiframe

flexflex

netbeansnetbeans

cocoacocoa
osxosx

linq-to-sqllinq-to-sql

csscss

silverlightsilverlight

sqlitesqlite

windowswindows

canvascanvas

ruby-on-rails-3ruby-on-rails-3
ruby-on-railsruby-on-railsdjangodjango

datagridviewdatagridview

uiviewuiview

data-bindingdata-binding

templatestemplates

opencvopencv

rspecrspec

android-intentandroid-intent

internet-explorerinternet-explorer

android-fragmentsandroid-fragments

postpost

iisiis

listlist

entity-frameworkentity-framework

classclass

jquery-ajaxjquery-ajax

swingswing

pdopdo

c++11c++11

django-modelsdjango-models

ajaxajax

python-3.xpython-3.x

springspring

winapiwinapi

domdom

rubyruby

eclipseeclipse

oopoop

firefoxfirefox

xcodexcode

wordpresswordpressstlstl
bashbash

multithreadingmultithreading

ios5ios5

xmlxml

sessionsession

jquery-pluginsjquery-plugins

servletsservlets

jdbcjdbc

facebookfacebook

activerecordactiverecord

android-asynctaskandroid-asynctask

linqlinq

mvvmmvvm

excel-vbaexcel-vba
vbavba

arraysarrays

codeignitercodeigniter

facebook-graph-apifacebook-graph-api

openglopengl

python-2.7python-2.7
reflectionreflection

matplotlibmatplotlib

excelexcel

zend-frameworkzend-framework

numpynumpy

windows-phone-7windows-phone-7

tabletable

gwtgwt

cocoa-touchcocoa-touch

xsltxslt

herokuheroku

layoutlayout

bindingbinding

google-app-enginegoogle-app-engine

angularjsangularjs
google-chromegoogle-chrome

jquery-mobilejquery-mobile

ios4ios4
cakephpcakephp

gccgcc

vectorvector

javascript-eventsjavascript-events

android-listviewandroid-listview

activityactivity

devisedevise

android-widgetandroid-widget

symfony2symfony2

socketssockets

curlcurl

c#-4.0c#-4.0

visual-studio-2010visual-studio-2010

jquery-selectorsjquery-selectors

mysqlimysqli

appletapplet

tomcattomcat

Fig. 4 An example of tag correlation graph

2.2 Mining Relational Knowledge

In Stack Overflow, each question has up to 5 tags. These tags usually identify the main technologies
and constructs that the question revolves around (Nasehi et al, 2012) (see Fig. 1 for an example). As
Stack Overflow manages question tags as a set of terms, the correlation between tags are implicit.
We use association rule mining (Agrawal et al, 1994) to discover important correlation between
tags. In our application of association rule mining, we regard each tag sentence as a transaction,
and each tag in the sentence as an item in the transaction. There are two parameters in association
rule mining:

support(ti, tj) =
#tagSent containing (ti and tj)

#tagSent

confidence(ti ⇒ tj) =
#tagSent containing (ti and tj)

#tagSent containing ti

where ti and tj are two different tags, and tagSent is a tag sentence. The support value measures
how frequent the two tags co-occur in all the tag sentences. The confidence value measures the
proportion of the tag sentences containing both ti and tj compared with all the tag sentences
containing ti.

If the support value and confidence value of a tag pair {t1, t2} are above the respective threshold
tsup and tconf , we obtain an association pair t1 ⇒ t2. Note that our association rules involve only
single item in antecedent and consequent. Given the mined association pairs between tags, we
construct a tag correlation graph. The tag correlation graph is an undirected graph G(V,E),
where the node set V contains the tags appearing in the association pairs, and the edge set E
contains edges < t1, t2 > if the two tags has the association rule t1 ⇒ t2, t2 ⇒ t1 or both.

The tag correlation graph captures important relational knowledge between relevant technolo-
gies. Fig. 4 shows an example of tag correlation graph. Note that this graph is only a very small
portion of the entire tag correlation graph that is mined from Stack Overflow data dump (see
Section 3). For better observation, we apply community detection methods (Blondel et al, 2008)
to the graph so that tags in one community are in the same color. We can see that each tag com-
munity has at least one center tag which is usually a programming language or platform, and each
community contains tags (e.g., libraries, frameworks, tools, concepts, databases) that are highly
correlated with that programming language or platform. This resulting tag correlation graph can
be attributed to the common practice in Stack Overflow that users tag their questions with relevant
programming language and libraries. Therefore, the associations between pairs of related library
and programming language have generally higher support and confidence than the associations
between pairs of other categories of tags, forming the communities of tags centred on a relevant
programming language (or platform).

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 7

S

NP

NNP

Apple

IN

by

VBD

developed

NP

NN

system

NN

operating

JJ

mobile

DT

a

VBZ

is

NP

NNS

iOS

Fig. 5 POS tagging and phrase chunking results of the definition sentence of the tag iOS

2.3 Mining Categorical Knowledge

In Fig. 4, we can see that the tags can be of different categories, such as programming language,
library, framework, tool, IDE, operating systems, etc. To determine the category of a tag, we resort
to the tag definition in the TagWiki of the tag. The TagWiki of a tag is collaboratively edited by
the Stack Overflow community. Although there are no strict formatting rules in Stack Overflow,
the TagWiki description usually starts with a short sentence to define the tag. For example, the
tagWiki of the tag iOS starts with the sentence “iOS is a mobile operating system developed by
Apple”. Typically, the first noun sequence just after the be verb defines the category of the tag.
For example, from the tag definition of iOS, we can learn that the category of iOS is operating
system. For the generality of our approach, we define noun sequence in this work as a sequence
consisting of consecutive nouns between other POS tags, including at least one noun.

Based on the above observation of tag definitions, we use the NLP methods (similar to the
methods used in (Kazama and Torisawa, 2007) for named entity recognition) to extract such noun
sequence from the tag definition sentence as the category of a tag. Given the tagWiki of a tag
in Stack Overflow, we extract the first sentence of the TagWiki description, and clean up the
sentence by removing hyperlinks and brackets such as “{}”, “()”. Then, we apply Part of Speech
(POS) tagging and phrase chunking to the extracted sentence. POS tagging is the process of
marking up a word in a text as corresponding to a particular part of speech, such as noun, verb,
adjective. Phrase chunking is the process of segmenting a sentence into its subconstituents, such
as noun phrases, verb phrases. Different tools usually agree on the POS tags of nouns, and we find
that POS tagger in NLTK (Bird, 2006) is especially suitable for our task. In NLTK, the noun is
annotated by different POS tags3 including NN (Noun, singular or mass), NNS (Noun, plural),
NNP (Proper noun, singular), NNPS (Proper noun, plural). Then we use the phrase chunking i.e.,
regular expression to recognize consecutive nouns (at least one noun) as noun sequence by their
POS tags. Fig. 5 shows the results for the tag definition sentence of iOS. Based on the POS tagging
and phrase chunking results, we extract the first noun sequence (operating system in this example)
after the be verb (is in this example). We use this noun sequence as the category of the tag. That
is, the category of iOS is operating system.

With this method, we obtain 318 categories for the 23,658 tags that have TagWiki. We manually
normalize these 318 categories labels, such as merging operating system and os as os, libraries
and lib as library, and normalizing uppercase and lowercase (e.g., API and api). As a result, we
obtain 167 categories. Furthermore, we manually categorize these 167 categories into four general
categories: programming language, platform, library, and concept/standard. These four general
categories are defined in our previous work for named entity recognition (Ye et al, 2016a). This
generalization step is necessary, especially for the library tags that broadly refer to the tags whose
fine-grained categories can be library, framework, api, toolkit, wrapper, and so on4. This is because
the meaning of these fine-grained categories is often overlapping, and there is no consistent rule
for the usage of these terms in the TagWiki. For example, in Stack Overflow’s TagWiki, junit is
defined as a framework, google-visualization is defined as an API, and wxpython is defined as a
wrapper. All these tags are referred to as library tags in our approach.

Although the above method obtains the tag category for the majority of the tags, the first
sentence of the TagWiki of some tags is not formatted in the standard “tag be noun sequence”
form. For example, the first sentence of the TagWiki of the tag itext is “Library to create and

3 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
4 A complete list can be found at https://graphofknowledge.appspot.com/libCategory

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://graphofknowledge.appspot.com/libCategory

8 Chunyang Chen et al.

word embedding of t3

𝑡1 t5 t4 𝑡2

t3

(a) Continuous skip-gram model

word embedding of tଷ

ଵݐ ଶݐସݐହݐ

tଷ

(b) Continuous bag-of-words model

Fig. 6 The architecture of the two word embeddings models. The continuous skip-gram model predicts surrounding
words given the central word, and the CBOW model predicts the central word based on the context words. Note
the differences in arrow direction between the two models.

manipulate PDF documents in Java”, or for markermanager, the tag definition sentence is “A
Google Maps tool”, or for ghc-pkg, the tag definition sentence is “The command ghc-pkg can be
used to handle GHC packages”. As there is no be verb in this sentence, the above NLP method
cannot return a noun sequence as the tag category. According to our observation, for most of
such cases, the category of the tag is still present in the sentence, but often in many different
ways. It is very likely that the category word appears as the first noun sequence that match the
existing category words in the definition sentence. Therefore, we use a dictionary look-up method to
determine the category of such tags. Specially, we use the 167 categories obtained using the above
NLP method as a dictionary to recognize the category of the tags that have not been categorized
using the NLP method. Given an uncategorized tag, we scan the first sentence of the tag’s TagWiki
from the beginning, and search for the first match of a category label in the sentence. If a match
is found, the tag is categorized as the matched category. For example, the tag itext is categorized
as library using this dictionary look-up method. Using the dictionary look-up method, we obtain
the category for 9,648 more tags.

Note that we cannot categorize some (less than 15%) of the tags using the above NLP method
and the dictionary look-up method. This is because these tags do not have a clear tag definition
sentence, for example, the TagWiki of the tag richtextbox states that “The RichTextBox control
enables you to display or edit RTF content”. This sentence is not a clear definition of what rich-
textbox is. Or no category match can be found in the tag definition sentence of some tags. For
example, the TagWiki of the tag carousel states that “A rotating display of content that can house
a variety of content”. Unfortunately, we do not have the category “display” in the 167 categories
we collect using the NLP method. When building analogical-libraries knowledge base, we exclude
these uncategorized tags as potential candidates.

2.4 Learning Tag Embeddings

Word embeddings are low-dimensional vector representations of words that are built on the assump-
tion that words with similar meanings tend to present in similar contexts. Recently, Mikolov et al
(2013c,b) demonstrate that the word embeddings encode similarities between pairs of words, for
example, the gender relation exhibited by the pairs “man:woman”, “king:queen”, the capital− of
relation in “Paris:France”, “Madrid:Spain”. Such similarities are referred to as linguistic regulari-
ties by Mikolov et al. and as relational similarities by (Turney, 2006). Remarkably, Mikolov et al.
show that such relations are reflected in vector offsets between word pairs (e.g., man− woman ≈
king−queen, Paris−France ≈Madrid−Spain), and that by using simple vector arithmetic one
could apply the relation and solve analogy questions of the form “a is to A as ? is to B” in which
the nature of the relation is hidden. That is, the identity of the unknown word “?” can be inferred
from the words whose word embedding is most similar (e.g., by cosine similarity) to the vector
a−A + B, for example, king for man− woman + queen, Madrid for Paris− France + Spain).

In our approach, given a corpus of tag sentences, we use word embedding methods (Mikolov
et al, 2013a) to learn the word representation of each tag using the surrounding context of the tag
in the corpus of tag sentences. In the resulting word embedding space, the vector offsets between

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 9

analogical libraries and their corresponding programming languages or mobile platforms would
exhibit relational similarity, for example, nltk − python ≈ opennlp − java. Thus, given a library
(e.g., python’s nltk), we can infer analogical libraries for a programming language (e.g., java) as nltk
for python by a K-nearest-neighbor search for the tags (e.g., opennlp) whose word representation
is the most similar to the vector nltk − python + java in the resulting word embedding space. In
the same way, we can infer analogical libraries for different mobile platforms like afnetworking −
ios + android ≈ volley .

In this work, we use association rule mining to discover the explicit correlation of a library
and its associated programming language (or platform), because Stack Overflow users commonly
tag their questions with the relevant programming language (or platform) and library. However,
association rule mining cannot support the discovery of analogical libraries, because association
rules can capture the correlations between tags only if they co-occur frequently enough in the same
transactions. However, analogical libraries rarely co-occur together in the same questions in Stack
Overflow. For example, “python-imaging-library” and “aforge” are two libraries specifically for
computer vision in Python and C# respectively, but they never occur together in Stack Overflow.
Even for the same programming languages, analogical libraries are also rarely mentioned in the
same questions. This is because Stack Overflow questions are usually about the use of a particular
library rather than many libraries. As a result, analogical relationships cannot be extracted by
association rules. Different from association rule mining, word embedding learns the semantics of
a centre word from the words often appearing in the context of the centre word. Therefore, it
can infer analogical tags from the similar contexts even the two tags never co-occur in the same
questions.

There are two kinds of widely-used word embedding methods (Mikolov et al, 2013a), the con-
tinuous skip-gram model (Mikolov et al, 2013b) and the continuous bag-of-words (CBOW) model.
As illustrated in Fig. 6, the objective of the continuous skip-gram model is to learn the word rep-
resentation of each word that is good at predicting the co-occurring words in the same sentence
(Fig. 6(a)), while the CBOW is the opposite, that is, predicting the center word by the context
words (Fig. 6(b)). Note that word order within the context window is not important for learning
word embeddings.

Specifically, given a sequence of training text stream t1, t2, ..., tk, the objective of the continuous
skip-gram model is to maximize the following average log probability:

L =
1

K

K∑
k=1

∑
−N�j�N,j 6=0

log p(tk+j |tk) (1)

while the objective of the CBOW model is:

L =
1

K

K∑
k=1

log p(tk|(tk−N , tk−N+1, ..., tk+N)) (2)

where tk is the central word, tk+j is its surrounding word with the distance j, and N indicates the
context window size. In our application of the word embedding, a tag sentence is a training text
stream, and each tag is a word. As one tag sentence is short (has at most 5 tags), we set N at 4
in our approach so that the context of one tag is all other tags in the current sentences. That is,
the context window contains all other tags as the surrounding words for a given tag. Therefore,
tag order does not matter in this work for learning tag embeddings.

The probability p(tk+j |tk) in Eq. 1 or p(tk|(tk−j , tk−j+1, ..., tk+j)) in Eq. 2 can be formu-
lated as a log-linear softmax function which can be efficiently solved by the negative sampling
method (Mikolov et al, 2013b). After the iterative feed-forward and back propagation, the training
process finally converges, and each tag obtains a low-dimension vector as its word representation
(i.e., tag embedding) in the resulting vector space.

To determine which word-embedding model performs better in our analogical library reasoning
task , we carry out a comparison experiment, and the details are discussed in Section 4.3.2.

10 Chunyang Chen et al.

2.5 Building Analogical-Libraries Knowledge Base

We build a knowledge base of analogical libraries for different programming languages (or mobile
platforms) by incorporating tag embeddings and categorical and relational knowledge of tags. First,
we obtain the initial analogical-library candidates for different programming languages (or mobile
platforms) based on tag embeddings and tag categories. Then, we refine the initial candidates
according to the correlations of libraries and programming languages (or mobile platforms).

2.5.1 Is the Word Embedding Enough for Recommendation?

One of the most important and famous characteristics of word embeddings is that they can capture
analogy relationships among words like man−woman ≈ king− queen. In this work, we apply this
characteristic to software-specific data to infer analogy libraries like python−nltk ≈ java−opennlp.
However, no techniques alone are perfect, especially when a technique is adapted to an application
context (software tags in this work) different from its original application context (general English
text). For example, words in general text do not have categories. They are just words. But software
tags can be of different categories, such as languages, libraries, or general concepts. For example,
for an analogy query python−nltk ≈ java−?, in addition to libraries such as opennlp and stanford-
nlp, tag-embedding based reasoning alone will also find relevant concept such as pos-tagger and
word-sense-disambiguation. Although relevant, these concepts are out of scope of analogical library
recommendation. Furthermore, different software tags also exhibit different types of correlations.
For example, libraries and their implementation languages have strong correlations as they usually
appear together when Stack Overflow users tag the question. In contrast, a general concept (e.g.,
named-entity-recognition) can be related to many libraries and languages. Based on such domain-
specific characteristics, we combine tag-embedding based analogical reasoning with tag category
information and library-language/platform association to improve the results of analogical library
recommendation.

2.5.2 Obtain Analogical-library Candidates

Given a library tag t1, we first examine its correlated tags to determine its base programming
language (or mobile platform), denoted as base1. Let base2 be a programming-language (or mobile-
platform) tag which can be the same as base1 or be different from base1. Let vec(x) be the tag
embedding of the tag x. To find the analogical libraries t2 for the base2 as the library t1 for the
base1, we find the library tags t2 whose tag embedding vec(t2) is most similar (by cosine similarity
in this work) to the vector vec(t1)− vec(base1) + vec(base2), i.e.,

argmax
t2∈T

cos(vec(t2), vec(t1)− vec(base1) + vec(base2)) (3)

where T is the set of library tags excluding t1, and cos(u, v) is the cosine similarity of the two
vectors.

Note that tags whose tag embedding is similar to the vector vec(t1)−vec(base1)+vec(base2) may
not always be library tags. For example, tag embeddings of the tags nlp, named-entity-recognition
and language-model are similar to the vector vec(nltk)− vec(python) + vec(java). These tags are
relevant to the NLP as they refer to some NLP concepts and tasks, but they are not analogical
libraries to the nltk. In our approach, we rely on the category of tags (i.e., categorical knowledge)
to return only library tags as candidates.

In practice, there could be several analogical libraries t2 for the base2 as the library t1 for the
base1. Thus, we select library tags t2 with the cosine similarity in Eq. 3 above a threshold Thresh.
Take the library nltk (a NLP library in python) as an example. As shown in the Fig. 7, for python,
our approach returns the analogical libraries such as textblob and gensim; for java, our approach
returns the analogical libraries such as stanford-nlp, opennlp, and gate.

We empirically develop a guideline to set the candidate selection threshold. First, our experi-
ment shows that a fixed threshold for all libraries often lead to an overall unsatisfactory recommen-
dation. For example, low threshold results in too many irrelevant candidates, while high threshold
results in too few relevant candidates. This could be attributed to the word embeddings technique

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 11

Source lib Target Language Top-5 recommendations from word embedding
jackson python simplejson, flexjson, pickle, jsonserializer, attributeerror
jfreechart c# candlestick-chart, mschart, shieldui, syncfusion, radar-chart
nltk java nlp, named-entity-recognition, opennlp, gate, language-model
itextsharp javascript acrofields, itextpdf, weasyprint, jspdf, html2pdf
phpunit c++ cppunit, cxxtest, cpputest, heap-corruption, msvc12

Table 1 Examples of filtering results by relational knowledge (in blue) and categorical knowledge (in red)

that learns more accurate tag representations for frequent tags than for less frequent tags, because
frequent tags have more training data (Mikolov et al, 2013a). As such, we find that threshold
should be adjusted based on the usage frequency of tags. For less frequent tags, higher threshold
should be used in order to filter out irrelevant candidates due to less accurate tag embeddings.
In contrast, lower threshold could be used for frequent tags so that as many relevant candidates
as possible will be selected. In practice, we can determine concrete thresholds for a dataset by
sampling library tags with different usage frequencies and manually examine the recommendation
results for the sampled libraries following the procedure in Section 4.3. The objective is to achieve
a good balance of accuracy and coverage in the overall recommendation. Note that we can esti-
mate the coverage by collecting and examining the top-rank recommended libraries for a group of
libraries with similar functionalities.

2.5.3 Refine Initial Results

The initial analogical-library candidates sometimes include libraries that are not for the given pro-
gramming language (or mobile platform) base2. For example, itextsharp is a c# library for PDF
generation and manipulation. To find analogical libraries for javascript as the library itextsharp for
c#, by Eq. 3 we would obtain some libraries, such as itextpdf (a library for java and c#), weasyprint
(a library for python), and html2pdf (a library for php). Although these libraries support simi-
lar features (e.g., PDF generation and manipulation) to the itextsharp, they are not libraries for
javascript. In our approach, we rely on the correlation between a library and a programming
language (or mobile platform) (i.e., relational knowledge) to select the libraries for a given pro-
gramming language. Specifically, we consider a programming language (or mobile platform) that a
library has the strongest association with as the programming language (or mobile platform) that
the library is implemented in. Using this relational knowledge, we can exclude libraries that are not
for the given programming language (or mobile platform). More examples for filtering irrelevant
tags by relational and categorical knowledge can be seen in Table 1. The filtering by relational
knowledge is in blue and the filtering by categorical knowledge is in red.

2.6 Assisting Analogical-Libraries Comparison

After knowing some candidate analogical libraries, developers are likely interested in the compari-
son between the current library and an analogical library, such as runtime performance, reliability,
active versions, documentation, community size, to determine whether the recommended analogical
library meets their needs. To migrate from the current library to an analogical library, developers
also need to understand the process of migration and the efforts needed, for example, how to use
the analogical library by referring to the experience with the current library. That is, developers
have to collect and study more information about some recommended analogical libraries than just
knowing the name of these libraries. We would like to provide developers some information scents
to assist their further search and investigation of the recommended analogical libraries. To that
end, we develop a keyword-based matching method to extract sentences in Stack Overflow ques-
tions and answers that likely assist developers in comparing analogical libraries. It is important to
note that this feature is not to replace other effective information retrieval methods (e.g., search
engines), but to provide hints about some aspects of analogical libraries when developers discuss
and compare them in Stack Overflow questions and answers.

12 Chunyang Chen et al.

lib pairs Extracted comparison questions
opennlp, stanford-nlp Part of speech tagging in OpenNLP vs StanfordNLP
awt, swing What is the difference between Swing and AWT?
bokeh, matplotlib Plot topics with bokeh or matplotlib
junit, testng Drawbacks of TestNG compared to jUnit?
log4net, nlog log4net vs. Nlog
django-haystack, sphinx django haystack or sphinx for simple search?

Table 2 Example questions about the comparison of the two analogical libraries in Stack Overflow

lib pairs related answer snippets

opennlp, stanford-nlp i liked the stanford parser better than opennlp , again just looking at documents, mostly news articles
awt, swing swing and awt both provide user interface components , however swing is built on top of awt
innodb,myisam there are some features that are only available using myisam, like full text search,

but unless you need these, i would go with innodb.
junit, testng testng strives to be much more configurable than junit , but in the end they both work equally well.
d3.js, dc.js moving onto dc.js ... steps : you need to load the following libraries and css files...
log4net, nlog nlog seems to be better maintained : an incompatibility of log4net with .net4 remained

unresolved in log4net for quite a long time ...
m2crypto, pyopenssl the analog of command ... in m2crypto is: ... you can use m2crypto instead of pyopenssl with twisted
beautifulsoup, jsoup jsoup is the java version of beautiful soup

Table 3 Example sentences in Stack Overflow answers about the comparison of the two analogical libraries

2.6.1 Extract Comparison Questions

Given a library and one of its analogical libraries in the analogical-library knowledge base, we try
to find Stack Overflow questions whose question title mentions the two libraries. To check if a
question title mentions a library, We first lowercase both the question title and the library tag. If
the library tag contains hyphen, we consider that a question mentions the library if the question
contains any of the original form of the library tag, or no-hyphen form, or hyphen-to-space form
(e.g., stanford-nlp, stanford nlp, stanfordnlp).

Furthermore, we develop several heuristic rules according to our observation of the extracted
questions to remove the false positives that unlikely compare the two libraries:

– Question title should not mention the two libraries like “lib1/lib2” format because this format
usually means that the two libraries are the same or interchangeable in the question;

– Question should not be asked as “how” statements because such questions are usually about
how to use the mentioned libraries;

– There are not quoted elements in the question tile because such questions usually are only
about some specific elements of a library.

Table 2 lists some example questions about the comparison of analogical libraries extracted
using the proposed keyword-matching method. Such questions provide developers some hints for
comparing analogical libraries and selecting suitable ones for their tasks.

2.6.2 Extract Comparison Answer Snippets

A Stack Overflow question may have several answers and/or comments which often comprise a
long discussion thread to read. Sometimes developers may want more direct hints, for example,
several sentences mentioning and comparing the two libraries Huang et al (2018), instead of the
whole discussion thread. Furthermore, some statements about the comparison of the two libraries
may appear in the answers to some questions which are not originally asked about the comparison
of the mentioned libraries. Therefore, in addition to extracting comparison questions for analogical
libraries, we also try to extract comparison sentences in question answers that mentions analogical
libraries. Note that we do not extract comparison sentences from question body because the ques-
tion asker may not understand the two libraries very well and their statements may be misleading
or wrong.

We first find all posts containing two libraries, same as the procedures for find comparison
questions in last section. To guarantee the quality of the extracted sentences, we only extract
sentences from answers with vote larger than 1 (vote = upvote− downvote). After extracting the
candidate answers that mention the two libraries, we first remove all code snippets (enclosed by
HTML tag < code >) and then split the answer texts into sentences by punctuation such as ”. ”, ”!”,
”;”, etc. We select sentences that mention the two libraries at the same time. Sometimes, there may
be many sentences mentioning the two libraries. To give developers a concise overview of comparison

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 13

Asking trend of libraries in
different languages

Link to the tagWiki

Link to the tagWiki Click to view extracted comparison questions and answer snippets

Click to view analogical libraries for the clicked library

Fig. 7 The scrrenshot of our website SimilarTech and the important elements in the website

snippets, we take only the two sentences appearing first in the answer as the representative snippets
of the answer. After finding the two sentences, we show them in the same order as they appear
in the original answer. Finally we rank the candidate answers by their vote to display to the
developers.

Some example comparison answer snippets can be seen in the Table 3. We can see that these
answer snippets provide more direct hints about different aspects, usage differences and migration
steps of the two libraries.

3 Tool Support

This section describes the proof-of-concept implementation of our approach and the practice of
search engine optimization so that our website can be indexed by search engines.

3.1 Tool Description

We develop a web application with two parts. One is called SimilarTech (https://graphofknowledge.
appspot.com/similartech) and the other is called SimilarMobileTech (https://graphofknowledge.
appspot.com/similartech/mobile.html). Given a library name, SimilarTech automatically rec-
ommends its analogical libraries for different programming languages and SimilarMobileTech rec-
ommends analogical libraries across different mobile platforms. The current backend of SimilarTech
and SimilarMobileTech is an analogical-libraries knowledge base built with the Stack Overflow data
dump that contains Stack Overflow post data from July 31st, 2008 to Dec 3rd, 2017. The backend
knowledge base can be updated periodically as the new data dump is released.

The data dump we use in the current implementation contains 14,995,834 questions and 41,856
different tags. As some infrequent or emerging tags do not have corresponding TagWiki, we collect
in total 36,088 tags that have TagWiki for mining relational and categorical knowledge of tags
and for learning tag embeddings. Among 36,088 tags in our dataset, 8,211 tags are categorized as
library tags. We use the implementation of continuous skip-gram algorithm (Mikolov et al, 2013b)
in Word2Vec5 to learn tag embeddings. We set tag embedding dimension at 200. By small-scale

5 https://code.google.com/p/word2vec/

https://graphofknowledge.appspot.com/similartech
https://graphofknowledge.appspot.com/similartech
https://graphofknowledge.appspot.com/similartech/mobile.html
https://graphofknowledge.appspot.com/similartech/mobile.html
https://code.google.com/p/word2vec/

14 Chunyang Chen et al.

pilot study, we empirically set the support threshold at 2.3× 10−6, and the confidence threshold
at 0.15.

In the current implementation, SimilarTech recommends analogical libraries for the top-six most
frequently-asked programming languages in Stack Overflow, i.e., java, javascript, c#, php, python
and c++. SimilarMobileTech recommends analogical libraries for the top-three most frequently-
asked mobile platforms, i.e., ios, android and windows-phone.

Fig. 7 shows a screenshot of our SimilarTech. SimilarMobileTech has the same user interface
design. Given a library, SimilarTech presents up to four libraries with the highest similarity for
each programming language. The rationale is that developers would be unlikely to look through
a long list of recommendations and there are usually just a few most popular libraries for each
programming language. Note that listing up to four libraries is only an implementation decision,
not a limitation of our approach.

Different programming languages may have different numbers of recommended analogical li-
braries. This is natural because some programming languages have more alternatives for a par-
ticular task, while others have less. In some cases, a programming language may not have any
analogical libraries for the given library. For example, developers rarely use javascript for machine
learning tasks. Thus, there are no well-known machine learning libraries written in javascript. For
the machine learning library weka, none of the javascript libraries is similar enough to the weka.
In such cases, SimilarTech recommends no libraries for that particular programming language. In
the same vein, SimilarMobileTech may not recommend analogical libraries for a particular mobile
platform.

For each recommended analogical library, both SimilarTech and SimilarMobileTech show a
brief definition extracted from the corresponding TagWiki. They also summarizes the number of
questions tagged with a library per month, and plots the metrics over time in a so-called asking
trend. The asking trends of analogical libraries allow the user to easily compare the amount of the
questions for each library on Stack Overflow. This information could provide hints about community
size of library users and availability of online learning resources, and offer some indicators of library
popularity (Chen and Xing, 2016b).

Clicking the recommended library navigates to the analogical-library page of the clicked library.
Clicking the button “Comparison” for a recommended library navigates to the comparison page
between the searched library and the clicked library. The comparison page presents comparison
questions and answer snippets extracted from Stack Overflow discussions, which could aid users to
compare commonalities and differences of the two libraries and understand the potential migration
issues.

3.2 Search Engine Optimization

Our website provides a portal to the mined analogical-library knowledge base. However, developers
will not benefits from our knowledge base unless they are aware of the presence of our website and
use the information in our website when they search analogical libraries. Therefore, we carry out
search engine optimization (SEO) for our website so that it can be indexed and recommended by
search engines. SEO is the process of maximizing the number of visitors to a particular website by
ensuring that the site appears high in the search results returned by a search engine for certain
types of queries6.

To achieve the SEO, we take three steps for our website. First, we submit all pages inside our
website to several main-stream search engines such as Google, Bing and Yandex so that these
search engines will crawl our site and index its content inside their database. Each page in our
website contains information about a library and its analogical libraries. Second, based on the
recommended analogical libraries for a library, we automatically generate a brief description for
each page in our website and add this description as the title and metadata for each page. Search
engines use the provided webpage title and metadata to present the webpage in the search results.
Examples of webpage title and metadata in the search results can be seen in Fig. 8. The shown
webpage title and metadata can lead web searchers to our website for further information. They can
also be used as extended suggestions which may help web searchers refine their queries even without

6 https://en.wikipedia.org/wiki/Search_engine_optimization

https://en.wikipedia.org/wiki/Search_engine_optimization

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 15

(a) nltk similar libraries (b) jspdf alternative libraries

Fig. 8 Two example search in Google and our page ranks the first in the search results

visiting our website. Third, we make our website design mobile-friendly, as such optimization can
rank our site higher in search engine7.

After SEO, for some queries (e.g., xxx similar libraries or xxx alternative libraries), our webpages
can rank quite high in the search results especially by Google search engine. Two examples can
be seen in Fig. 8. The two queries were issued on November 17, 2016 in Singapore and Australia.
Our “nltk” and “jspdf” page rank the first for the respective query. As Google adjusts the page
ranking not only based on page content and links, but also click rate8, the high-ranking of our
webpages in the search results means that many users truly click our webpages from the search
results. According to the Google Analytics for our website, in the past 6 months, on average more
than 2000 users around the world visit our site from their Google search results in each month.
Our website usage data is limited but promising. It demonstrates the popularity and usefulness of
our knowledge base and website. The usage data of our site will be further analyzed in Section 6.

4 Accuracy Evaluation

In this section, we evaluate the mined relational and categorical knowledge of tags and the accuracy
of analogical-libraries recommendations. Then we zoom-into specific cases in which our approach
makes poor recommendation to understand the limitations of our approach.

4.1 The Accuracy of Tag Categorization

From 33,306 tag with tag category extracted by out method, we randomly sample 1000 tags whose
categories are determined using the NLP method, and the other 1000 tags whose categories are
determined by the dictionary look-up method (see Section 2.3).

5 final-year Computer Science undergraduate students are recruited to manually examine the
category of these 2000 tags by reading their corresponding TagWiki. As it is clear that whether
a tag represents a programming language, a library, or a general computing concept and whether
the extracted category corresponds to what a tag represents, we assign different participants with
different sets of tags, so that we can examine as many results as possible with limited number
of participants. In this experiment, each participant is assigned 200 tags from the NLP method,
and 200 tags from the dictionary look-up method for checking. Among these 1000 sampled tag
categories from NLP methods, 838 (83.8%) tags are correctly extracted by our proposed methods.
For the 1000 sampled tags from the word match, 788 (78.8%) of them are accurate. According to our
observation, two reasons lead to the erroneous categorization. First, some tag definition sentences
are complex which can lead to erroneous POS tagging results. For example, the tagWiki of the
tag rpy2 states that “RPy is a very simple, yet robust, Python interface to the R Programming
Language”. The default POS tagging recognizes simple as the noun which is then regarded as the
category by our rule. Second, the dictionary look-up method sometimes makes mistakes, as the
matched category may not be the real category. For example, the TagWiki of the tag honeypot

7 https://webmasters.googleblog.com/2016/03/continuing-to-make-web-more-mobile.html
8 https://goo.gl/nb5czF

https://webmasters.googleblog.com/2016/03/continuing-to-make-web-more-mobile.html
https://goo.gl/nb5czF

16 Chunyang Chen et al.

states “A trap set to detect or deflect attempts to hack a site or system”. Our approach matches
the system as the category of the honeypot.

As this work focuses on tags whose categories can be regarded as library, such as library,
framework, api, toolkit, wrapper, etc., we further check the correctness of these library tags in the
sampled tags. Among the 2000 sampled tags, there are 487 tags whose category can be regarded
as library. 401 out of these 487 tags (82.3%) are correctly categorized. The accuracy of our tag
categorization provides a solid basis for the analogical-libraries reasoning tasks.

Note that the selection of detailed POS tagging tool (We use NLTK in this work) may influence
the accuracy of extracting tag category. Therefore, we have also tried POS tagger in Standford-
NLP (Manning et al, 2014), and the tag categories of 22,808 (96.8%) out of all 23,658 tags identified
by Stanford-NLP POS tagger are the same as the that of NLTK POS tagger.

4.2 The Semantic Distance of Tag Correlations

To evaluate the mined relational knowledge of correlated tags, we adopt the metric similar to
“Google distance” (Cilibrasi and Vitanyi, 2007; Gligorov et al, 2007). Google distance is a crowd-
scale method to measure the semantic distance between a set of words by analyzing search engine
data. The assumption is that the co-occurrence of a set of words in the same queries is a good
indicator of the semantic distance between the words.

In this work, we use (Google, 2015) to evaluate the semantic distance of the correlated tags in
the mined tag correlation graph. Google Trends is a public web service that shows how frequent a
particular search-term is searched compared with the total search-volume in Google search. Given
a pair of correlated tags (e.g., <java, swing>) in the tag correlation graph, we query the Google
Trends with the two tags as a search term (i.e., “java swing”). Google Trends will provide the
trend statistics for popular queries, and report “no enough data” for non-popular queries9.

We randomly sample 1,000 pairs of tags (i.e., tag relations) in our tag correlation graph. A
small percentage of tag relations (13.1%) are not present in Google Trends (i.e., no enough data”).
That is, these pairs of tags are not popular queries according to Google Trends. However, a pair
of tags not present in Google Trend does not necessarily indicate wrong tag relations. First, some
tags of emerging techniques (e.g., apiary.io) may not accumulate enough search volume on Google.
Second, the difference between tagging behavior and search behavior could also result in a small
percentage of tag pairs not present in Google Trend. For example, Stack Overflow users always use
javascript and video.js together to tag questions, while web users search Google with video.js only
without javascript.

Among the 1,000 sampled tag relations, 137 are correlations between a programming language
and a library. We further check the semantic distance of these 137 library-programming-language
correlations. The results show that 88.3% of these 137 correlations appear in Google Trends.
Overall, the mined relational knowledge of tags can accurately represent the semantic relationships
between software-specific entities, including programming languages and libraries.

4.3 The Accuracy of Analogical-Libraries Recommendation

We first describe the procedure and metric to evaluate the accuracy of our analogical-libraries
recommendation. Then, we present the evaluation results.

4.3.1 Evaluation procedure and metrics

We randomly sampled 100 libraries as the test cases from our analogical-library knowledge base for
programming languages. As analogical-library knowledge base for mobile platforms is smaller, we
randomly sampled 40 libraries as the test cases for mobile platforms. These test-case libraries sup-
port a diverse set of functionalities, such as visualization, networking, machine learning, searching,
testing, and so on. 7 students are recruited (6 PhD student and 1 master student) to evaluate the
accuracy of our analogical-library recommendations. All the participants are majored in computer

9 The detailed threshold to discriminate popular or unpopular queries is a commercial secret of Google.

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 17

science and have at least 4-year programming experience. Each of the participants is randomly
assigned 20 test-case libraries and they are asked independently judge the accuracy of the recom-
mended analogical libraries for the assigned 20 test-case libraries.

To evaluate the impact of different kinds of knowledge for analogical-library recommendation,
we ask the participants to evaluate the accuracy of four different methods: vector offset of tag
embeddings and relational and categorical knowledge of tags (denoted as w2v+rckg in the following
discussion), vector offset of tag embeddings and relational knowledge of tags (w2v + rkg),vector
offset of tag embeddings and categorical knowledge of tags (w2v + ckg), and vector offset of tag
embeddings alone (w2v).

As there is no ground truth of analogical libraries, the participants have to manually check
each recommended library for a given test-case library. They examine information from library’s
official website, TagWiki, wikipedia, and other available online information. If the recommended
library can provide comparable features as the given test-case library, the recommendation is
considered as correct. Note that we do not consider relevant libraries as correct recommendations.
For example, SimilarTech recommends the powermock and mockito for the library junit. powermock
and mockito are mocking framework for testing. Although powermock and mockito are relevant
to the library junit, we do not consider them as analogical library to junit, because they do not
provide comparable features as the given library.

Our approach is inspired by the use of word embeddings to solve analogy questions of word
pairs (Mikolov et al, 2013c). The original word-pair analogy tasks includes two sets: semantic
analogies such as Paris−France ≈ ?−Spain and syntactic analogies such as quickly− quick ≈
?− slow. In these work-pair analogy tasks, there is only one correct answer, for example Madrid
for Paris− France ≈ ?− Spain, and slowly for quickly − quick ≈ ?− slow.

In contrast, our analogical-libraries task may return several analogical libraries for a given
library, as there is rarely only one solution in software engineering context. For example, for the
NLP library nltk for Python, there are several comparable libraries for Java, such as standford-nlp,
opennlp, gate. Therefore, we use the Precision@k metric (Manning et al, 2008; Wang et al, 2014) to
evaluate the accuracy of analogical-libraries recommendation. Note that as the set of all analogical
libraries is literally unknown, it is impossible to evaluate Recall@k.

For a given test-case library, let’s assume that SimilarTech recommends at least one library for
n (1 ≤ n ≤ 6) programming languages. Let correcti@k be the number of correct recommendations
in the top-k recommended libraries for a particular programming language PLi (1 ≤ i ≤ n).
The Precisioni@k (k = 1, 2, 3, 4, 5 in this evaluation) for the programming language PLi is
correcti@k/k. We compute the Precision@k for the given test library as:

n∑
i=1

Precisioni@k

n

i.e., the average of the Precisioni@k metrics of all the programming languages with at least one
recommended library for the given test library.

In the analysis of the recommendation accuracy, we use boxplot to visually compare Precision@k
for all the 100 test-case libraries. In addition, we perform t-test (Student, 1908; Vasilescu et al,
2014) statistical comparison of distribution of Precision@k for all the 100 test-case libraries in
the four different recommendation settings. As we are concerned with the comparison between
our model and other baselines, we carry out t-test between w2v+rckg and each baseline method
(w2v+r kg, w2v+c kg, w2v). The same evaluate metric applies for the platform-based recommen-
dation by SimilarMobileTech.

We use a small k value because there are usually only a small number of analogical libraries
for a given library. According to our observation, most of libraries have 0 to 4 analogical libraries.
In our current tool, we display up-to four analogical libraries for a programming language in a
row (see Fig. 7). Each recommended library has a short description of the library features. In
this presentation design, the exact ranking of a library in the recommendation list is not critical,
because users can quickly read through the entire recommendation list. Therefore, we do not use
rank-based metrics such as mean reciprocal rank in this experiment.

18 Chunyang Chen et al.

1 2 3 4 5
K

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

@
k

CBOW
Skip-gram

Fig. 9 The comparison between the CBOW and continuous skip-gram model

1 2 3 4 5
K

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

@
k

w2v+rc_kg w2v+c_kg w2v+r_kg w2v

(a) language-based recommendation

1 2 3 4 5
K

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

@
k

w2v+rc_kg w2v+c_kg w2v+r_kg w2v

(b) platform-based recommendation

Fig. 10 Recommendation accuracy using the combination of different kinds of knowledge

4.3.2 Comparison between Continuous Skip-gram and CBOW

We manually check the accuracy of analogical library recommendations by the two different word
embedding models respectively. The result can be seen in Fig 9. It shows that the continuous
skip-gram model can learn higher-quality tag embedding than the CBOW model, leading to higher
precision of the recommendations with K ranging from 1 to 5. Similar results have also been
reported in (Mikolov et al, 2013a) that shows the skip-gram model owns better accuracy, especially
for rare words. Therefore, we adopt the skip-gram model as the default tag embedding model in
this work, and all the following experiments are based on the skip-gram model.

4.3.3 Accuracy results

Fig. 10 illustrates the Precision@k of the four recommendation methods based on different kinds
of knowledge. We can see that the tag-embeddings-only (w2v only) recommendation performs
poorly. The median recommendation accuracy by tag embedding alone is about 0.3 in the top-1
recommendation, and even lower as 0.2 in the top-5 recommendation. This is because tag sentences
are short and have much noisy context information, compared with natural language sentences.
Incorporating relational and categorical knowledge of tags into analogical-libraries recommendation
can significantly improve the accuracy of the recommendation. The median of Precision@1 is
1.0 and the Precision@5 is still reasonably high at 0.7. Categorical knowledge of tags can boost
the accuracy more than relational knowledge of tags. Incorporating both knowledge yields the
best accuracy. Our results suggest that incorporating domain-specific categorical and relational
knowledge with tag embeddings can enhance analogical reasoning tasks in software engineering

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 19

context. We adopt the T∼procedures (Vasilescu et al, 2014) to evaluate the significance of our
results compared with other baseline settings. The p − value (< 0.05) between w2v+rckg and
other settings shows that our results are significant.

Our results show that, given a test-case library, the top-1 library that our approach recommends
for each programming language is high likely an analogical library, and the majority of the top-
5 recommended libraries for each programming language are analogical libraries. The relatively
lower precision for platform-based recommendation could be attributed to the nature of mobile
platforms. Unlike general programming languages which can be used for many common tasks, each
mobile platform usually has many unique features that differentiate one platform from another.
For example, viewdeck is a library for iOS apps which provides new features and enchanted view
controllers. mfi is the Apple program that hardware developers must join to be able to manufacture
and brand products as being made for iOS devices. The libraries that are highly unique for a specific
mobile platform usually have no alternatives for the other mobile platforms. As such, although the
recommended libraries across mobile platforms may have some similarities to a given library, they
are often not analogical libraries, because some features are unique to one mobile platform and do
not actually have counterparts on the other mobile platform. This results in the lower precision
for platform-based recommendation.

To verify if the association rules can discover analogical libraries, we conduct a simple but
effective experiment. Among all 100 language-based test libraries manually checked in Section 4.3.1,
we have collected 790 pairs of analogical libraries which are marked as correct. We then count the
frequency of the co-occurrence of pairs of analogical libraries in the tag sentences in the whole
dataset. The results show that only 142 (18%) of these pairs of analogical libraries co-occur in the
same tag sentences more than 10 times. But compared with totally 14,995,834 tag sentences, 10
times is too small to be extracted by association rules unless the support threshold is set extremely
low (10/14, 995, 834 = 6.710−7). But this extremely low support threshold will produce too many
false positives of association pairs. Furthermore, even the support value is set at this extremely
low threshold, association rules can only get at most 18% analogical library pairs but also a lot of
false positive pairs. That is why it is impossible to use the association rules mining alone to obtain
our knowledge base of analogical libraries.

4.3.4 Analysis of inaccurate recommendations

Although our approach can make accurate analogical-libraries recommendations in most cases,
as the first work of this kind that combines word embeddings technique with domain-specific
knowledge for analogical reasoning tasks, we would like to further investigate in which cases our
approach cannot make good recommendations. This will help us, as well as other researchers and
designers of similar systems, understand the limitations of our approach and address them in the
future.

To that end, we investigate the test cases for which the Precision@5 metrics are below 0.2, i.e.,
almost all the recommended libraries for a given test-case library are incorrect. We find that such
test-case libraries fall into two categories: either a full-stack framework that supports a wide range
of features or a library that provides a very specific feature or support some unique features for a
particular language or mobile platform.

For the first case, an example is ruby-on-rails (a web application framework for Ruby). We
expect that our approach can recommend analogical framework such as node.js for JavaScript,
django for Python, and codeigniter for PHP. But the recommendations by SimilarTech do not
include any such web application frameworks. The fundamental reason for such poor recommen-
dations is that neural network language models assume that similar words share similar context
such that word embeddings can be learned from the surrounding context. However, these full-stack
frameworks can be used in very diverse context, which leads to very diverse tag sentences. As a
result, in the resulting word embedding space, these frameworks and their respective programming
languages do not exhibit relational similarity (or linguistic regularity) which is necessary for ana-
logical reasoning. Thus, our approach fails to recommend analogical web application frameworks
for the ruby-on-rails.

For the second case, examples include jnotify and mako. jnotify is a Java library that allow
Java application to listen to file system events. mako is a template library providing non-XML

20 Chunyang Chen et al.

syntax which compiles into Python modules and conceptually can be considered as an embed-
ded Python language. Due to their very specific or language-dependent features, it is unlikely
that other programming languages have comparable libraries. As illustrated in the viewdeck and
mfi examples above, unique libraries for mobile platforms often result in poor analogical-libraries
recommendation across mobile platforms.

To sum up, our approach is not suitable for finding analogical libraries for feature-rich, full-stack
frameworks or language- or platform-dependent, unique libraries.

4.3.5 Recommendation changes due to Stack Overflow data evolution

For the 100 language-based test libraries, we manually compare the recommendation results from
the latest data with results in our previous work (Chen et al, 2016a) which adopt the data from July
2008 to Aug 2015. most of the recommendation results from two datasets are the same because most
core technologies are still the same in just a few years. But meanwhile, we also observe three frequent
change patterns. First, some old technologies in the previous recommendations disappear in the
current recommendation. For example, cleartk10 (a framework for developing NLP components in
Java) is no longer in the top list of analogical libraries to NLTK, as cleartk stopped its update two
year ago. Second, some new technologies begin to appear in the current recommendations. Let’s
take the theano (a numerical computation library for Python, widely used in deep learning) as an
example, its analogical libraries now include the latest deep learning libraries such as Tensorflow
and PyTorch which are released in the recent years. Third, some emerging libraries are replacing old
libraries. For instance, PIL (Python-Image-Library) is a python library for manipulating images.
But its development appears to be discontinued with the last commit to the PIL repository in
2011. Consequently, a successor project called Pillow has forked the PIL repository and added
more functionality and Python 3.x support. More users begin to use pillow rather than PIL.
Therefore, pillow is surpassing PIL for some recommendation to image libraries like opencv.

4.4 The Relevance of Comparison Questions & Answer Snippets

As our approach extracts comparison snippets about the two analogical libraries, we randomly
sample 70 pairs of analogical libraries for this experiment. Each of the 7 participants (same as the
last section) are randomly assigned 10 pairs of libraries. They are asked to evaluate whether or not
an extracted comparison question or answer snippet is about the comparison of some aspects of a
given pair of libraries. Before the real experiment, we conduct a pilot study to evaluate the potential
discrepancies that could be made by different annotators. The pilot study involves the first two
authors examining the extracted comparison snippets for another five randomly sampled pairs of
analogical libraries. We find that the assessment is very straightforward and the two annotators
do not have discrepancies regarding whether an extracted comparison question or answer snippet
is about the comparison of a given pair of libraries. Furthermore, we would like to examine as
many results as possible with only limited number of participants. Therefore, we assign different
participants with different sets of library pairs in the real experiment.

For each pair of libraries, the participants evaluate the top-5 extracted comparison questions
and answer snippets. Note that some library pairs may have less than 5 extracted questions or
answer snippets. For this experiment, the participants evaluate in total 315 extracted questions
and 336 answer snippets for the sampled 70 pairs of analogical libraries.

203 (64.4%) of questions and 253 (75.3%) are marked as related to the comparison about the
two analogical libraries. We further check why some questions and answer snippets are marked as
irrelevant of comparison. We find that some questions are about the migration from one library to
another library such as “StructureMap to Ninject conversion”. Although such questions or answer
snippets are not related to the comparison, it could still be useful information for developers
who look for analogical libraries, as they could help developers understand the migration process
and avoid some potential mistakes by learning others’ experience. Some comparison-irrelevant
questions/answer snippets are about how the two libraries can complement each other. For example,
one answer snippet of nltk and stanford-nlp is “always refer to ... for the latest instruction on how

10 https://github.com/ClearTK/cleartk

https://github.com/ClearTK/cleartk

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 21

Fig. 11 An example analogical question and its answers in Stack Overflow. Relevant libraries are often hyperlinked
in the answers.

to interface stanford nlp tools using nltk ...”. It tells how users can interface stanford-nlp with
nltk. This could be useful, because stanford-nlp may have better performance in some aspects but
developers may still want to use nltk due to Python’s convenience.

5 Usefulness Evaluation

To demonstrate the usefulness of the proposed approach for analogical-library recommendation, we
sample some questions about analogical-library recommendation in Stack Overflow, and investigate
how well our recommendation can answer such questions, compared with answers provided by Stack
Overflow users.

5.1 Experimental Setup

In Stack Overflow, there are many analogical questions such as “Is there a C++ unit testing li-
brary that is similar to NUnit?” (in Fig. 1) and “Cobertura equivalent available for C# .NET?”
(in Fig. 11). We define several heuristic rules (e.g, question title contains “similar library”, “alter-
native”, “equivalent libraries”) to collect a set of candidate analogical questions in Stack Overflow.
Then we manually filter out some inappropriate questions which is not about library recommenda-
tion, and finally sample 50 questions with more than one answers as the language-based analogical
questions and 20 questions with more than one answers as mobile-based analogical questions11.

After that, we recruit 7 students (same to the Section 4.3.1) to extract all the recommended
libraries from the answers. We find that for these analogical questions, answerers often add a
hyperlink to the recommended library so that readers can access the relevant resource for more
details about the library (see Fig. 11). Based on this observation, we ask the participants to pay
more attention to such elements. To make the extracted library mentions consistent with the format
of tags in Stack Overflow, we lowercase all of them and replace the space with “-”. After building
the ground truth sets for the sampled analogical questions, we check how many of the ground-
truth answers provided by Stack Overflow users are covered by our recommendation results for
each analogical question.

5.2 Results

10 sample questions and answers can be seen in Table 4. For the 50 language-based analogical
questions, on average, 71.3% libraries in answers provided by Stack Overflow users are covered
by the recommended libraries using our approach. The average coverage rate is 62.3% for the 20
mobile-based analogy questions. It means that the majority of the libraries mentioned in the Stack
Overflow answers can be automatically recommended by our approach.

11 The list of sampled questions can be found at https://graphofknowledge.appspot.com/questions

https://graphofknowledge.appspot.com/questions

22 Chunyang Chen et al.

Question Stack Overflow answers Our recommendation

Cobertura equivalent available for C# .NET? ncover, opencover, partcover opencover,visual-studio-test-runner,partcover
Alternative for PHP GD library in python python-imaging-library python-imaging-library, pillow, scikit-image
Modern alternative to Java XStream library? jaxb, xmlbeans, jibx simple-framework, castor, xmlunit, jibx
Alternative to Java3D jogl, jMonkeyEngine jMonkeyEngine, jogl, jzy3d, worldwind
Open source Enthought Python alternative anaconda, pythonxy healpy, miniconda, pythonxy, canopy
PIL ImageTk equivalent in Python 3.x pillow pillow, pypng, scikit-image,pythonmagick
Crypto++ equivalent in C polarssl, openssl botan, polarssl, cryptoapi
Java equivalent for Python NLTK opennlp gate, opnenlp, stanford-nlp, cleartk
iAd alternative for ios ad display? adwhirl, adsense adwhirl, chartboost, openfeint
ASIHTTPRequest equivalent for Android? android-async-http android-async-http, multipartentity

Table 4 Example analogical questions and their answers from Stack Overflow and analogical libraries recommended
by our method

We further explore the libraries in Stack Overflow answers but are not covered by our rec-
ommendation. We conclude two reasons for the missing. First, some libraries in Stack Overflow
answers are indeed in our recommendation list (i.e., above the candidate selection threshold, such
as ncover for the first question in Table 4). But in this experiment, we consider only the top 4
recommended libraries as they are what our tool currently presents, and exclude the lower-ranked
recommendations. Second, some libraries in Stack Overflow answers may be helpful for the ana-
logical library mentioned in the answers, but these libraries themselves are not analogical libraries.
For example, pandas can help the Pythons’ visualization tool matplotlib conveniently visualize the
data, but pandas itself can not be regarded as an alternative to the Javascript’s visualization li-
brary d3.js. Such auxiliary libraries will not be covered in our recommendation which results in
the decrease of the coverage.

Apart from the covered libraries, our recommendation also contains some extra libraries that
are not in Stack Overflow answers. According to our observation, an important reason for such
extra libraries in our recommendation is the emerging new libraries that are not available at the
time when the questions were asked and answered. For example, the second question in Table 4
was asked five years ago, but the new analogical libraries pillow and scikit-image that our approach
recommends appear only about three years ago. Old posts in Stack Overflow are rarely updated
with such new development in the field, which is a key issue in finding analogical libraries using these
online posts. Our approach provides an alternative to recommend more up-to-date information.

6 Field Study

We release our website SimilarTech to the public in November 2015 and post this news on
several programming-related websites (e.g., http://stackapps.com/questions/6667, http://

stackapps.com/questions/6924). Google Analytics12 is embedded into our site to monitor our
site traffic. Furthermore, we record the detailed page visit history in our backend server, i.e., which
pages users visit, when users visit our website, and the IP address of users. We also log the users’ in-
teraction with the webpage content when they click recommended libraries, library TagWiki links,
comparison button, and asking trend tabs. These detailed user behavior data allows us to gain
insights into our approach and tool support which may benefit research of similar recommendation
systems. As we release the website SimilarMobileTech recently, we do not collect enough usage data
at the time of this submission. Therefore, we only analyze the usage data of our SimilarTech web-
site. In addition to the general site traffic statistics, we further investigate four research questions
regarding who visits our website and what the users are interested in in our website:

– RQ1: For which libraries and libraries comparisons are the users most interested in seeking
analogical libraries?

– RQ2: Do the users like to find analogical libraries within the same programming language or
across different languages?

– RQ3: Do the users explore the TagWiki and asking trend that our website provides?
– RQ4: Do professional developers from major IT companies visit our site?

12 https://analytics.google.com/

http://stackapps.com/questions/6667
http://stackapps.com/questions/6924
http://stackapps.com/questions/6924
https://analytics.google.com/

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 23

(a) Visiting statistics (b) Geo map (c) Returing users

Fig. 12 The traffic of our website from Google Analytics

0
200
400
600
800

1000
1200
1400
1600

FR
EQ

U
EN

CY

LIBRARY

0

20

40

60

80

100

120
FR
EQ

U
EN

CY

LIBRARY COMPARISON

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

java javascript c# python c++ php

FR
EQ

U
EN

CY

LANGUAGE

visit number
library number

(a) Top-10 libraries

0
200
400
600
800

1000
1200
1400
1600

FR
EQ

U
EN

CY

LIBRARY

0

20

40

60

80

100

120

FR
EQ

U
EN

CY

LIBRARY COMPARISON

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

java javascript c# python c++ php

FR
EQ

U
EN

CY

LANGUAGE

visit number
library number

(b) Visit frequency by language

0
200
400
600
800

1000
1200
1400
1600

FR
EQ

U
EN

CY

LIBRARY

0

20

40

60

80

100

120

FR
EQ

U
EN

CY

LIBRARY COMPARISON

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

java javascript c# python c++ php

FR
EQ

U
EN

CY

LANGUAGE

visit number
library number

(c) Top-10 comparisons

Fig. 13 (a) The top-10 most-frequently visited libraries in our website. (b) The number of libraries in each language
that have been visited and the total number of visits. (c)The top-10 most-frequently visited library comparisons

6.1 Site Traffic Statistics

According to the results from Google Analytics, more than 34,821 users from 168 countries visited
our site, from November 11, 2015 to August 29, 2017. As shown in Fig. 12(a), these users on
average browse 1.79 pages in each session and they browse in total more than 67,956 pages in
37,940 sessions13. The top 4 countries are the US (20.3%), India (9.7%), Germany (6.9%), and the
UK (5.7%) (Fig. 12(b)) which account for 42.6% visits. 8.2% users visit our site more than once
(Fig. 12(c)) which shows their recurring interests in our tool. The usage data of our website, albeit
limited, demonstrates both the needs and the interests in analogical-libraries recommendation that
our approach supports.

We note that the per-session page visit is not very high for our website. This can be attributed
to the design rationale of our website. The users of our website are expected to have on mind
specific information needs for certain analogical libraries when they visit our website. Our website
is designed to provide the users with a concise summary of the information they may need to find
analogical libraries. Then, the users may click library TagWiki or extracted comparison questions
and answer snippets to obtain more information about the recommended library in Stack Overflow.
Or they may leave our website to search the recommended library for more information. As a result,
we do not expect a high per-session page visit. In fact, through search-engine optimization, the
users may obtain the key information they need (i.e., the name of the analogical libraries) from
the webpage metadata displayed in the search results. They may then search the library names
directly, without visiting our website. Even in this scenario, our website still fulfills its design goal
to assist developers’ analogical-library search.

6.2 Most Interested Libraries, Languages and Comparisons (RQ1)

According to the logs of webpages visited, 3,929 libraries in the SimilarTech website have been
visited which account for 50.5% of all the libraries in our knowledge base. The top-10 most fre-
quently visited libraries can be seen in Fig. 13(a) and all of them have been visited more than 200

13 As most search engine robots do not activate javascript, robot traffic is not counted in Google Analytics (Google,
2016).

24 Chunyang Chen et al.

times. As mentioned in Section 2.2, the relational knowledge of tags can tell us which program-
ming language each library is primarily implemented in. For the six programming languages that
our website currently supports, we count the number of libraries in each language that have been
visited and the total number of visits. Fig 13(b) shows that libraries in Java are most frequently
visited (1,311 libraries and 18,314 times) and libraries in PHP is the least visited (maybe due to the
relatively fewer third-party libraries in PHP). Fig 13(c) depicts the top-10 most frequently visited
library comparisons. There are totally 9,395 visits for 6,572 different library comparisons, and such
statistics demonstrate the interest of users in further comparisons between similar libraries. Note
that the comparison service is launched in our website in 2017, so we do not collect as much data
as similar library visits.

6.3 Analogical Libraries Within or Across Languages (RQ2)

Our approach recommends analogical libraries for the same programming language as the given
library and across different languages. When the users search a library or view information of a
library in the SimilarTech website, we consider that the users are interested in the library. We
attempt to estimate the developers’ interests in analogical libraries within the same langauge or
across different languages by analyzing the logs of how users search libraries and view library
information in our website.

In our website, users can enter a library name in the search box, and the website shows the
analogical-library page for the searched library. On an analogical-library webpage, users can click
a recommended library which brings the users to the analogical-library page for the clicked library.
Users can also click “Learn more” to view the TagWiki of a recommended library. We collect the
sequence of the user’s actions (excluding the visit of the home page) in our website during a visit
session.

As we want to analyze the users’ interests in analogical libraries within or across languages,
sequences with only one action are ignored. From the 11465 sequences that contain at least two
actions, we extract pairs of consecutive actions that involve a library searched followed by an
analogical library searched/viewed. We obtain 15039 such pairs. For each pair of libraries, we
check the language of the libraries. Among 15039 pairs, 12721 pairs of libraries are in the same
language, and the rest 2318 pairs of libraries are across different languages.

The users’ search and browsing behavior in our website seems to suggest that the users are
more interested in analogical libraries within the same language than across different languages.
Two reasons may account for such results. First, we place the same-language analogical libraries
in the first row in the web page. This may attract more clicks. Second, many developers are most
familiar with one programming language. Thus, they may prefer analogical libraries in the same
language over using some libraries in another language they are not good at.

We further analyze the potential migration pattern of developers when they are interested in
analogical libraries across different languages, i.e., developers want to find analogical libraries from
which language to the other. Table 6.3 displays the results of the language migration matrix. We
can see that java and c# developers more likely search for analogical libraries in other languages,
compared with developers of other languages. On the other hand, python seems to attract devel-
opers from other languages to change to use libraries in python. This could be because python has
many libraries that are good alternatives for libraries in other languages and also maybe due to
its popularity in deep learning. For php, it seems that PHP developers do not often change to use
libraries in other languages, and developers of other languages do not often change to use PHP
libraries either.

It is important to note that this analysis could be biased for two factors. First, users may
simply view the information on an analogical-library page without clicking any recommended
libraries and/or their TagWikis. In fact, we have about 71.1% action sequences containing only
one action. In such cases, users may still have interests in some information in the webpage, for
example, view asking trend, highlight some words in the TagWiki snippets while reading them,
copy some keywords for their further search. However, we do not have clear signals about what
they may be interested in. Second, it is very likely that after finding some hints for analogical

What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 25

````````source
target

java javascript python c# c++ php sum

java 117 226 234 94 38 709
javascript 63 94 87 41 52 337

python 107 44 84 81 26 342
c# 150 89 101 110 26 476

c++ 52 23 148 59 11 293
php 24 33 57 35 12 161
sum 396 306 626 499 338 153

Table 5 Language migration statistics

libraries in our website, users leave our website to google the libraries for more details. We cannot
collect any behavior data (like libraries searched and webpages read) outside our website.

6.4 Usefulness of TagWiki and Asking Trend (RQ3)

Our web application does not just provide the names of analogical libraries, but also provides a
brief description of the recommended library and a summary of asking trends of the recommended
libraries. We collect the users’ interaction with the provided information in order to understand
whether they are useful or not. The behavior tracking component was deployed in July 3, 2016.
The analysis below is based on the data collected from July 3, 2016 to Aug 29, 2017.

In the last 14 months, apart from the homepage, 42,127 library pages in our websites are
visited. Among these web pages, users access the TagWiki of the searched library, asking trend
tabs, the TagWiki for the recommended libraries, and/or the library comparison in 15,730 pages
(37.3%). Users access the TagWikis of some recommended libraries in 2,936 pages. Users click
asking trend tabs for different languages in 2,224 pages. It indicates that some users are not only
interested in knowing the name of analogical libraries, but also want to know more details about
our recommendations. Surprisingly, users click the TagWiki of the searched library in 11,314 pages.
This could be because the design of our website which may mislead the users to click the link of a
recommended library when they only want to read the TagWiki of the library. Within 1,522 pages,
the user clicked the comparison button to compare the searched library with the recommended
libraries. In the current design, clicking the link of a recommended library brings the users to the
analogical-library page for the clicked library, while the uses must click “Learn more” for a library
to access its TagWiki. When the users find that clicking the link of the recommended library does
not lead them to the TagWiki, they may then click “Learn more” for the clicked library on its
analogical-library page to access its TagWiki. We will further improve our website design to make
it more user-friendly.

Although many users do not explicitly click any elements in the web pages they visit, it does
not mean that they do not get the information they need. It is likely that the users find the
information they need from the TagWiki snippets and the asking trends that is already presented
in the webpage. For example, the web page displays the asking trends of the analogical libraries in
the same programming language as the searched library by default. If the users are only interested
in analogical libraries in the same programming language as the searched library (according to the
analysis in Section 6.3, this is likely the case), they do not need to click any asking trend tabs
to get the trend information they need. Furthermore, it is impossible to track how the users use
the information from our website once they leave our website. Therefore, our analysis provides a
conservative estimate of how useful the information our webpage provides could be.

6.5 Real Developers’ Visits (RQ4)

For each visitor of our website, we record their IP address. Given the IP address, we can find their
Internet Service Provider using the ipinfo.io service14. From the ISP, we can know the organization
to which the IP address belongs. Table 6.5 lists several IT companies whose IP addresses visit
our website frequently. As the visits to our website only last several web pages, we rule out the

14 http://ipinfo.io/

http://ipinfo.io/


26 Chunyang Chen et al.

Company #IPs
Google Inc. 218
Amazon.com, Inc. 207
Microsoft Corporation 98
Alibaba (China) Technology Co., Ltd. 73
Cisco Systems, Inc. 42
Oracle Corporation 41
Apple Inc. 37
Hewlett-Packard Company 35
Intel Corporation 32
Facebook, Inc. 19

Table 6 The number of visits from big companies

Metrics Company Rest
returning visitors 22.1% 8.2%
pages per session 1.47 1.79

Table 7 The comparison of visits between developers from big companies and the rest

possibility of the web crawler. In addition, as our website is related to programming, we assume
the visits from these companies are from their developers.

We further explore the visit logs of the users from the listed IT companies, and compare their
behaviors with that of other users. We have in total 801 users from the listed IT companies, and
these users browse 1440 pages in 979 sessions. Table 6.5 shows the behavior difference between
the IT company users and the other users. It is more likely that the company users will revisit
our website (22.1%) than the other users (8.2%). But the company users visit fewer pages (1.47)
in each session than the other users (1.79). This could be because these company users are more
experienced and have specific information needs on mind. Therefore, they do not need to explore
the recommended analogical libraries in our website.

We then analyze the click behaviors of these company visitors to conclude their migration
patterns. Among all 221 sessions with more than one query, we find that most of users (90%) are
interested in the analogical libraries within the same language, and the most popular languages are
Java and Javascript which are widely used in the industry. For the cross-language clicks, the most
frequent migration is from C++ to Python, Java to Python, and Java to Javascript which indicates
the interests migrating from objected-oriented programming language to scripting languages. Note
that as the log size is small and sparse, we do not find very frequent library migrations. In addition,
this observation may not represent the real trends of the industry.

7 Related Work

7.1 Recommendation system in Software Engineering

Recommendation systems are widely utilized in Software Engineering context. Many applications
have been proposed to recommend code snippets for developers, such as Jungloid (Xu et al, 2005),
ParseWeb (Thummalapenta and Xie, 2007), MAPO (Zhong et al, 2009). Chen et al (Chen et al,
2016b,a) recommend technology landscape for developers to have an overview of certain high-
level technologies. Some works (Chan et al, 2012; Thung et al, 2013b) recommend API methods
according to natural-language queries. In industry, code search engines have been developed (such
as Google code, OpenHub) for developers to search code on the Internet. Compared with these
code-level recommendation systems, our approach works at a different level of granularity i.e.,
library-level, and recommends analogical third-party libraries to the developers.

Language migration is a common phenomenon for developers as they may have to switch from
one programming language to another according to the task requirements. The biggest challenge
is usually the code and library migration, rather than learning a new language itself15. Many
researchers have proposed methods to assist code migration, such as code mapping (Nguyen et al,

15 http://stackoverflow.com/questions/212151/

http://stackoverflow.com/questions/212151/


What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 27

2013), function mapping (Teyton et al, 2013), and API migration (Zhong et al, 2010; Nguyen et al,
2014). In contrast to these code-level migration, our approach supports library-level migration.

Thung et al analyze the library co-occurrence patterns in software projects to recommend
relevant libraries for a software project(Thung et al, 2013a). Teyton et al analyze the evolution of
projects’ dependencies (Teyton et al, 2012, 2014) on third-party libraries to recommend libraries
that can replace an existing library in a software project. Different from these approaches, our
approach does not rely on the information about the projects’ dependencies on third-party libraries.
Instead, we mine analogical libraries from the crowdsourced knowledge in domain-specific Q&A
sites (such as Stack Overflow). Furthermore, existing approaches are limited to recommend libraries
for the same programming language, while our system can recommend alternative, comparable
libraries across different programming languages.

7.2 Word Embedding in Software Engineering

Our approach is motivated by the recent success of using word embedings techniques to solve
semantic and syntactic analogy tasks in NLP applications (Mikolov et al, 2013b; Turney, 2006).
We propose to learn tag embeddings from a corpus of tag sentences derived from Stack Overflow
questions, and solve the problem of finding analogical libraries using the vector arithmetic of the
resulting tag embeddings. Different from English text in common NLP problems, our tag sentences
are short and lack of linguistic rules and notions. Inspired by the recent works (Xu et al, 2014;
Zhou et al, 2015), we propose to incorporate relational and categorical knowledge of tags into
tag embeddings to improve the accuracy of analogical-libraries reasoning tasks. Different from
their works (Xu et al, 2014; Zhou et al, 2015) in which relational and categorical knowledge are
provided by human experts, our approach mines domain-specific knowledge automatically from
Q&A discussions and community wikis on Stack Overflow.

Word embedding has recently been adopted in analyzing software engineering data. Some re-
searchers (Vu et al, 2015, 2016) mine user opinions in the mobile application reviews by extracting
semantically related words by word embedding. Ye et al (2016b) improve the information retrieval
in software engineering text by using word embeddings to measure document similarities. There are
also works (Van Nguyen et al, 2016; Nguyen et al, 2016, 2017) encoding API elements with word
vector representation and then map word vectors for code migration. Chen et al (2017b) combine
word embedding and lexical rules to extract abbreviations and synonyms of software-specific terms.

Word embeddings can also be incorporated into deep learning methods like Convolutional
Neural Network for different tasks in software engineering, such as predicting semantically linkable
knowledge (Xu et al, 2016), cross-lingual information retrieval (Chen et al, 2016c), and duplicate
bug retrieval (Deshmukh et al, 2017). Different from these works, we not only encode tags with
word embedding techniques, but also exploit relational and categorical knowledge of tags to reason
about analogical libraries.

Our approach assumes that Stack Overflow questions have high-quality tags through its col-
laborative editing mechanism. This assumption is based on an empirical study of the trade-offs of
introducing collaborative editing model to Stack Overflow (Li et al, 2015; Chen et al, 2017a, 2018)
in the social computing community. Several studies (Xia et al, 2013; Wang et al, 2014) in soft-
ware engineering community also investigate the quality of Stack Overflow tags and they propose
machine learning algorithms for recommending missing tags based on the correlation analysis of
question content and tags. These tag improving techniques can be integrated into the collaborative
editing process to improve the efficiency of collaborative editing, which may subsequently increase
the quality of question tags taken as input in our method.

Association rule mining (Agrawal et al, 1993) is a rule-based machine learning method for
discovering interesting relations between variables in large databases. To filter out insignificant
rules, lift and fisher exact test (Webb, 2006) has been adopted, besides the min-support and
min-confidence. However, among all mined association pairs, we are only concerned with pairs of
a library and a programming language in this work. As it is a common practice in Stack Overflow
that users tag their questions with relevant programming language and libraries, the associations
between pairs of related library and programming language have generally higher support and
confidence than the associations between pairs of other categories of tags. Therefore, based on



28 Chunyang Chen et al.

the tags’ categorical knowledge and a relatively high min-support and min-confidence threshold,
association pairs of library and program language can be well extracted, without the need to resort
to more complex lift with Fisher exact test method.

7.3 Practical Tools in Software Recommendations

It is worth mentioning some related non-academic projects. SimilarWeb16 is a website that provides
both users engagement statistics and similar competitors for websites and mobile applications. Al-
ternativeTo17 is a social software recommendation website in which users can find alternatives to a
given software based on user recommendations. These websites can help regular web users to find
similar or alternative websites or software applications. But their content is not useful for domain-
specific information needs of software developers, for example, to find analogical libraries for dif-
ferent programming languages. In contrast, our web application is built on software-engineering
data and is specifically designed for software developers.

8 Conclusion and Future Work

Third-party libraries assist developers in finishing software engineering tasks more efficiently with-
out the need to reinvent the wheels. However, due to many reasons such as lack of active main-
tenance of the libraries being used or language migration, developers often need to find some
alternative and comparable libraries to replace the libraries they are already familiar with. Al-
though developers can find useful information in community-curated list, blogs and Q&A posts on
the Web, the information is likely to require tedious and time-consuming browsing and aggregation,
or is likely to be out of date to mislead developers especially the novice.

In this paper, we propose an automated technique to recommend analogical libraries. We adopt
the cutting-edge deep learning method in NLP applications (also known as word embeddings) to
the software engineering data. We further enhance the original word embedding technique with
software-engineering domain knowledge to better answer analogy questions in software engineering
context. Given a library, our approach can recommend several most salient analogical libraries for
different programming languages or different mobile platforms.

We evaluate all the components of our approach, including the quality of the mined relational
and categorical knowledge, and the quality of the analogical-libraries recommendation, and the rel-
evance of comparison questions and answer snippets. Our approach achieves very promising results
for analogical-libraries recommendation. We also implement our approach in a web application18

and release the web application for public use and evaluation. Our analysis of the visit data of
our web application reveals the needs for future research on API-level migration support across
frequently-seen library migration. The usage data also shows the importance of the wiki-style
description of technologies and the technology trend analysis for recommendation tasks.

In the future, we will analyze the website traffic and user behaviors in our website to enhance the
accuracy of analogical-libraries recommendation. Furthermore, we are very interested in extending
our approach to fine-grained level of analogy relationships, for example, mining analogical APIs
across different libraries or programming languages in Q&A discussions or other online resources
(e.g., Github). Tens of thousands of API analogy questions can be found on Stack Overflow, which
indicates the urgent needs for the automatic tool support at the API level. We believe the ability
to easily find analogical APIs and their usage can boost developers’ productivity and efficiency
when they migrate from one programming language to another unfamiliar language.

Exiting studies of Stack Overflow data focus on mining discussion topics or recovering traceabil-
ity between software project data and Stack Overflow posts. In contrast, our work demonstrates
the feasibility of turning software engineering social content on Stack Overflow into a knowledge
base of software-specific entities and their relationships to improve developers’ life on the Internet.
Apart from analogical-libraries recommendation, another contribution of this work is an initial

16 www.similarweb.com/
17 http://alternativeto.net/
18 https://graphofknowledge.appspot.com/similartech

www.similarweb.com/
http://alternativeto.net/
https://graphofknowledge.appspot.com/similartech


What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 29

knowledge graph that captures the domain-specific relational and categorical knowledge of tens of
thousands of software-specific entities. In the future, we will extend this initial knowledge graph
with more software-specific entities (e.g., APIs) and richer set of relationships between entities. We
are interested in entity-centric search systems that can exploit this knowledge graph for not only
displaying additional facts and direct information about the central entity in a query, but also to
provide extended suggestions for users who would like to browse. This work can be considered as
the very first step towards our long-term goal.

9 Acknowledgement

We’d like to appreciate the valuable review from reviewers. This work is partially supported by
the seed grant from Monash University.

References

Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large
databases. In: Acm sigmod record, ACM, vol 22, pp 207–216

Agrawal R, Srikant R, et al (1994) Fast algorithms for mining association rules. In: Proc. 20th int.
conf. very large data bases, VLDB, vol 1215, pp 487–499

Barua A, Thomas SW, Hassan AE (2014) What are developers talking about? an analysis of topics
and trends in stack overflow. Empirical Software Engineering 19(3):619–654

Bird S (2006) Nltk: the natural language toolkit. In: Proceedings of the COLING/ACL on Inter-
active presentation sessions, Association for Computational Linguistics, pp 69–72

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10):P10,008

Chan WK, Cheng H, Lo D (2012) Searching connected api subgraph via text phrases. In: Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, ACM, p 10

Chen C, Xing Z (2016a) Similartech: automatically recommend analogical libraries across different
programming languages. In: Automated Software Engineering (ASE), 2016 31st IEEE/ACM
International Conference on, IEEE, pp 834–839

Chen C, Xing Z (2016b) Towards correlating search on google and asking on stack overflow. In: The
40th IEEE Computer Society International Conference on Computers, Software & Applications,
IEEE, pp 83–92

Chen C, Gao S, Xing Z (2016a) Mining analogical libraries in q&a discussions–incorporating rela-
tional and categorical knowledge into word embedding. In: 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER), IEEE, vol 1, pp 338–348

Chen C, Xing Z, Han L (2016b) Techland: Assisting technology landscape inquiries with insights
from stack overflow. In: Software Maintenance and Evolution (ICSME), 2016 IEEE International
Conference on, IEEE, pp 356–366

Chen C, Xing Z, Liu Y (2017a) By the community & for the community: A deep learning approach
to assist collaborative editing in q&a sites. PACMHCI 1(CSCW):32:1–32:21

Chen C, Xing Z, Wang X (2017b) Unsupervised software-specific morphological forms inference
from informal discussions. In: Proceedings of the 39th International Conference on Software
Engineering, IEEE Press, pp 450–461

Chen C, Chen X, Sun J, Xing Z, Li G (2018) Data-driven proactive policy assurance of post quality
in community q&a sites. vol 2, pp 33:1–32:22

Chen G, Chen C, Xing Z, Xu B (2016c) Learning a dual-language vector space for domain-specific
cross-lingual question retrieval. In: Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ACM, pp 744–755

Chen W, Zhang Y, Zhang M (2014) Feature embedding for dependency parsing. In: Proceedings
of the International Conference on Computational Linguistics

Cilibrasi RL, Vitanyi P (2007) The google similarity distance. Knowledge and Data Engineering,
IEEE Transactions on 19(3):370–383



30 Chunyang Chen et al.

Deshmukh J, Podder S, Sengupta S, Dubash N, et al (2017) Towards accurate duplicate bug
retrieval using deep learning techniques. In: Software Maintenance and Evolution (ICSME),
2017 IEEE International Conference on, IEEE, pp 115–124

Gligorov R, ten Kate W, Aleksovski Z, Van Harmelen F (2007) Using google distance to weight
approximate ontology matches. In: Proceedings of the 16th international conference on World
Wide Web, ACM, pp 767–776

Google (2015) Google trends. https://www.google.com.sg/trends/
Google (2016) Google analytics policy. https://support.google.com/analytics/answer/

1315708?hl=en

Huang Y, Chen C, Xing Z, Lin T, Liu Y (2018) Tell them apart: distilling technology differences
from crowd-scale comparison discussions. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ACM, pp 214–224

Kazama J, Torisawa K (2007) Exploiting wikipedia as external knowledge for named entity recog-
nition. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp 698–707

Li G, Zhu H, Lu T, Ding X, Gu N (2015) Is it good to be like wikipedia?: Exploring the trade-
offs of introducing collaborative editing model to q&a sites. In: Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social Computing, ACM, pp 1080–
1091

Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D (2014) The stanford corenlp
natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association
for computational linguistics: system demonstrations, pp 55–60

Manning CD, Raghavan P, Schütze H, et al (2008) Introduction to information retrieval, vol 1.
Cambridge university press Cambridge

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations in
vector space. arXiv preprint arXiv:13013781

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed representations of words
and phrases and their compositionality. In: Advances in neural information processing systems,
pp 3111–3119

Mikolov T, Yih Wt, Zweig G (2013c) Linguistic regularities in continuous space word representa-
tions. In: HLT-NAACL, pp 746–751

Nasehi SM, Sillito J, Maurer F, Burns C (2012) What makes a good code example?: A study of
programming q&a in stackoverflow. In: Software Maintenance (ICSM), 2012 28th IEEE Inter-
national Conference on, IEEE, pp 25–34

Nguyen AT, Nguyen HA, Nguyen TT, Nguyen TN (2014) Statistical learning approach for mining
api usage mappings for code migration. In: Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering, ACM, pp 457–468

Nguyen TD, Nguyen AT, Nguyen TN (2016) Mapping api elements for code migration with vector
representations. In: Proceedings of the 38th International Conference on Software Engineering
Companion, ACM, pp 756–758

Nguyen TD, Nguyen AT, Phan HD, Nguyen TN (2017) Exploring api embedding for api usages
and applications. In: Proceedings of the 39th International Conference on Software Engineering,
IEEE Press, pp 438–449

Nguyen TT, Nguyen AT, Nguyen HA, Nguyen TN (2013) A statistical semantic language model
for source code. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ACM, pp 532–542

Student (1908) The probable error of a mean. Biometrika pp 1–25
Teyton C, Falleri JR, Blanc X (2012) Mining library migration graphs. In: Reverse Engineering

(WCRE), 2012 19th Working Conference on, IEEE, pp 289–298
Teyton C, Falleri JR, Blanc X (2013) Automatic discovery of function mappings between similar

libraries. In: Reverse Engineering (WCRE), 2013 20th Working Conference on, IEEE, pp 192–201
Teyton C, Falleri JR, Palyart M, Blanc X (2014) A study of library migrations in java. Journal of

Software: Evolution and Process 26(11):1030–1052
Thummalapenta S, Xie T (2007) Parseweb: a programmer assistant for reusing open source code

on the web. In: Proceedings of the twenty-second IEEE/ACM international conference on Au-
tomated software engineering, ACM, pp 204–213

https://www.google.com.sg/trends/
https://support.google.com/analytics/answer/1315708?hl=en
https://support.google.com/analytics/answer/1315708?hl=en


What’s Spain’s Paris? Mining Analogical Libraries from Q&A Discussions 31

Thung F, Lo D, Lawall J (2013a) Automated library recommendation. In: Reverse Engineering
(WCRE), 2013 20th Working Conference on, IEEE, pp 182–191

Thung F, Wang S, Lo D, Lawall J (2013b) Automatic recommendation of api methods from fea-
ture requests. In: Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, IEEE, pp 290–300

Turney PD (2006) Similarity of semantic relations. Computational Linguistics 32(3):379–416
Van Nguyen T, Nguyen AT, Nguyen TN (2016) Characterizing api elements in software docu-

mentation with vector representation. In: Proceedings of the 38th International Conference on
Software Engineering Companion, ACM, pp 749–751

Vasilescu B, Serebrenik A, Goeminne M, Mens T (2014) On the variation and specialisation of
workload—a case study of the gnome ecosystem community. Empirical Software Engineering
19(4):955–1008

Vu PM, Nguyen TT, Pham HV, Nguyen TT (2015) Mining user opinions in mobile app reviews: A
keyword-based approach (t). In: Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on, IEEE, pp 749–759

Vu PM, Pham HV, Nguyen TT, et al (2016) Phrase-based extraction of user opinions in mobile
app reviews. In: Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ACM, pp 726–731

Wang S, Lo D, Vasilescu B, Serebrenik A (2014) Entagrec: an enhanced tag recommendation
system for software information sites. In: Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on, IEEE, pp 291–300

Wang S, Lo D, Vasilescu B, Serebrenik A (2017) Entagrec++: An enhanced tag recommen-
dation system for software information sites. Empirical Software Engineering DOI 10.1007/
s10664-017-9533-1

Webb GI (2006) Discovering significant rules. In: Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, ACM, pp 434–443

Wu Y, Wang N, Kropczynski J, Carroll JM (2017) The appropriation of github for curation. PeerJ
Preprints 5:e2952v1

Xia X, Lo D, Wang X, Zhou B (2013) Tag recommendation in software information sites. In: Mining
Software Repositories (MSR), 2013 10th IEEE Working Conference on, IEEE, pp 287–296

Xu B, Ye D, Xing Z, Xia X, Chen G, Li S (2016) Predicting semantically linkable knowledge in
developer online forums via convolutional neural network. In: Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ACM, pp 51–62

Xu C, Bai Y, Bian J, Gao B, Wang G, Liu X, Liu TY (2014) Rc-net: A general framework for in-
corporating knowledge into word representations. In: Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management, ACM, pp 1219–1228

Xu DML, Bodık R, Kimelman D (2005) Jungloid mining: Helping to navigate the api jungle. In:
POPL

Ye D, Xing Z, Li J, Kapre N (2016a) Software-specific part-of-speech tagging: an experimental study
on stack overflow. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing,
ACM, pp 1378–1385

Ye X, Shen H, Ma X, Bunescu R, Liu C (2016b) From word embeddings to document similarities for
improved information retrieval in software engineering. In: Proceedings of the 38th International
Conference on Software Engineering, ACM, pp 404–415

Zhong H, Xie T, Zhang L, Pei J, Mei H (2009) Mapo: Mining and recommending api usage patterns.
In: ECOOP 2009–Object-Oriented Programming, Springer, pp 318–343

Zhong H, Thummalapenta S, Xie T, Zhang L, Wang Q (2010) Mining api mapping for lan-
guage migration. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, ACM, pp 195–204

Zhou G, He T, Zhao J, Hu P (2015) Learning continuous word embedding with metadata for ques-
tion retrieval in community question answering. In: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), Association for Computational Linguis-
tics Beijing, China, pp 250–259


	Introduction
	The Approach
	Tool Support
	Accuracy Evaluation
	Usefulness Evaluation
	Field Study
	Related Work
	Conclusion and Future Work
	Acknowledgement

