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ABSTRACT
Third-party libraries are an integral part of many software
projects. It often happens that developers need to find ana-
logical libraries that can provide comparable features to the
libraries they are already familiar with. Existing methods
to find analogical libraries are limited by the community-
curated list of libraries, blogs, or Q&A posts, which often
contain overwhelming or out-of-date information. This pa-
per presents our tool SimilarTech1 that makes it possible to
automatically recommend analogical libraries by incorporat-
ing tag embeddings and domain-specific relational and cate-
gorical knowledge mined from Stack Overflow. SimilarTech
currently supports recommendation of 6,715 libraries across
6 different programming languages. We release our Sim-

ilarTech website for public use. The SimilarTech web-
site attracts more than 2,400 users in the past 6 months.
We observe two typical usage patterns of our website in
the website visit logs which can satisfy different informa-
tion needs of developers. The demo video can be seen at
https://youtu.be/ubx8h4D4ieE.

1. INTRODUCTION
Third-party libraries are an integral part of many soft-

ware systems. They allows developers to focus on the key
business logic of their applications, and thus usually help
developers work more efficiently. It often happens that a
developer needs some analogical libraries that can provide
features comparable to the libraries he is already familiar
with. The reasons for such needs include that, for example,
the current library lacks certain desired features or develop-
ers want to migrate to other languages because of the task
requirements2. Figure 1 presents an example of such infor-
mation need on Stack Overflow.

In addition to post such questions on Q&A websites, de-
velopers can search the Internet for information about ana-
logical libraries by queries like “nltk similar libraries”, “nltk
java”. The search results often include some community-
curated list of libraries, many online articles, or Q&A dis-
cussions on Q&A site (e.g., Figure 1). However, many rec-
ommendations in the online documents may be out-of-date,
or based on personal opinions and thus may be biased. Fur-
thermore, developers often have to read many online doc-
uments, compare their information, and aggregate the an-
swers to their analogical library queries.

To overcome such shortcomings, we develop a tool, Simi-

1https://graphofknowledge.appspot.com/similartech
2http://stackoverflow.com/questions/212151/
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Figure 1: An exmaple of analogical-library question
on Stack Overflow.

larTech that allows users to find analogical libraries across
different languages easily and directly. Our SimilarTech

tool extracts software libraries from Stack Overflow tags.
SimilarTech determines semantic similarity of libraries based
on the tag embeddings learned from tags of tens of millions
of Stack Overflow questions. SimilarTech uses association
rule mining and Natural Language Processing (NLP) meth-
ods to mine the relational and categorical information about
tags. Finally, it reasons about analogical relationships be-
tween libraries based on the semantic similarity of libraries
and the relational and categorical knowledge of libraries. In-
stead of listing dozens of crappy libraries or relying on blogs
or Q&A posts, our approach directly recommends analogi-
cal libraries based on a knowledge base of analogical libraries
mined from Stack Overflow. This knowledge base is like for-
ever evolving blog posts about good analogical libraries to
the libraries that one is familiar with.

Currently, our SimilarTech tool supports recommenda-
tion of analogical libraries across six popular programming
languages, and user can access the recommendations through
a publicly available web application or through our browser
plugin. In addition to analogical library recommendation,
our website also provides the asking trend of each recom-
mended library in Stack Overflow, i.e., the number of ques-
tions that are tagged with the library tag over time. This
trend allows users to select popular libraries for their tasks.

By tracking and analyzing the website visit statistics via
Google Analytics, it shows that more than 2,400 users have
visited our site during the last 6 months. From the visiting
logs, we also observe usage patterns of our website which
can help address different information needs of developers
in searching for software libraries. These quantitative and
qualitative analysis demonstrate the usefulness of our tool.
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Figure 2: The overview of our approach

2. THE APPROACH
Our approach takes as input the tags of each question in

Stack Overflow and the TagWiki of each tag, and produces
as output a knowledge base of analogical libraries (Figure 2).
We considers the tags of a Stack Overflow question as a tag
sentence, and each tag of the question as a word in the tag
sentence. Therefore, we build a corpus of tag sentences, one
tag sentence per question. We use association rule mining
to ming the correlation among tag from tag sentences, and
use POS tagging and phrase chunking to determine the tag
category from its definition in TagWiki. Then we use con-
tinuous skip-gram model [9] to learn tag embeddings and
incorporate relational and categorical knowledge of tags to
build the knowledge base of analogical libraries.

2.1 Mining Relational Knowledge
In Stack Overflow, each question has up to 5 tags and

co-occurring tags are always related, according to our ob-
servation. To reveal such implicit relationship, we use as-
sociation rule mining [1] to discover important correlation
between tags.

In our application of association rule mining, a Stack Over-
flow question is considered as a transaction and the question
tags as items in the transaction. As we are interested in
constructing a TAN, we need to find frequent pairs of tech-
nologies, i.e., frequent itemsets that consist of two tags. A
pair of tags is frequent if the percentage of how many ques-
tions are tagged with this pair of tags compared with all
the questions is above the minimal support threshold tsup.
Given a frequent pair of tags {t1, t2}, association rule mining
generates an association rule t1 ⇒ t2 if the confidence of the
rule is above the minimal confidence threshold tconf . The
confidence of the rule t1 ⇒ t2 is computed as the percent-
age of how many questions are tagged with the pair of tags
compared with the questions that are tagged with the an-
tecedent tag t1. These rules indicate highly correlated tags
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Figure 3: POS tagging and phrase chunking results
of the definition sentence of the tag iOS

such as (java, opennlp) and (python, nltk). More details can
be referred in our previous works [5, 6].

2.2 Mining Categorical Knowledge
In Fig. 1, we can see that the tags can be of different

categories, such as programming language, library, concept,
operating systems, etc. To determine the category of a tag,
we resort to the tag definition in the TagWiki of the tag.
The TagWiki of a tag is collaboratively edited by the Stack
Overflow community. Although there are no strict format-
ting rules in Stack Overflow, the TagWiki description usually
starts with a short sentence to define the tag (e.g., Fig. 3).
Typically, the first noun phrase just after the be verb defines
the category of the tag.

Based on this heuristic, we use the NLP methods (similar
to the methods used in [8] for named entity recognition) to
extract such noun phrase from the tag definition sentence
as the category of a tag. POS tagging is the process of
marking up a word in a text as corresponding to a particu-
lar part of speech, such as common noun, verb, adjective.
Phrase chunking is the process of segmenting a sentence
into its subconstituents, such as noun phrases, verb phrases.
We first adopt the POS to annotate each word in the sen-
tence and then figure out noun phrases by phrase chunking.
Fig. 3 shows the results for the tag definition sentence of iOS.
Based on the POS tagging and phrase chunking results, we
extract the first noun phrase (NP) (operating system in this
example) after the be verb (is in this example). We use
this noun phrase as the category of the tag i.e., the cate-
gory of iOS is operating system. But tag sentence may not
always be complete which is not suitable for POS tagging.
For these cases, we employ a heuristic label-matching algo-
rithm to find their corresponding labels (more details can be
found in [3])

2.3 Learning Tag Embeddings
Word embeddings are low-dimensional vector representa-

tions of words that are built on the assumption that words
with similar meanings tend to present in similar contexts.
Recently, Mikolov et al. [10, 9] demonstrate that the word
embeddings encode similarities between pairs of words, for
example, the capital−of relation in“Paris : France”,“Madrid
: Spain”. Remarkably, they show that such relations are re-
flected in vector offsets between word pairs i.e., using simple
vector arithmetic could solve analogy questions of the form
“a is to A as ? is to B” in which the nature of the relation
is hidden.

In our approach, give a corpus of tag sentences, we use
continuous skip-gram learning algorithm [9] to learn the



word representation of each tag using the surrounding con-
text of the tag in the corpus of tag sentences. In the re-
sulting word embedding space, the vector offsets between
analogical libraries and their corresponding programming
languages would exhibit relational similarity, for example,
nltk − python ≈ opennlp − java. Thus, given a library
nltk and its corresponding programming language python
and another programming language java, we can transfer
the problem of finding analogical libraries to a trivial K-
nearest-neighbor search for the tags (e.g., opennlp) whose
word representations is the most similar to the vector nltk−
python + java in the resulting word embedding space.

In this work, we adopt continuous skip-gram model [9]
proposed by Mikolov. The objective of the continuous skip-
gram model is to learn the word representation of each word
that is good at predicting the co-occurring words in the
same sentence. Specifically, given a sequence of training text
stream t1, t2, ..., tk, the objective of the continuous skip-gram
model is to maximize the following average log probability:

L =
1

K

K∑
k=1

∑
−N�j�N,j 6=0

log p(tk+j |tk) (1)

where tk is the central word, tk+j is its surrounding word
with the distance j, and N indicates the context window
size to be 2N + 1.

The probability p(tk+j |tk) in Eq. 1 can be formulated as a
log-linear softmax function which can be efficiently solved by
the negative sampling method [9]. After the iterative feed-
forward and back propagation, the training process finally
converges, and each tag obtains a low-dimension vector as
its word representation (i.e., tag embedding) in the resulting
vector space.

2.4 Building Analogical-Libraries Knowledge
Base

Given the relational and categorical knowledge of the tags
and the tag embeddings of the tags, we build a knowledge
base of analogical libraries as follows.

In our approach, the library tags broadly refer to the tags
whose categories are library, framework, api, toolkit and so
on because the meaning of these categories is often overlap-
ping, and there is no consistent rule for the usage of these
terms in the TagWiki. For example, in Stack Overflow’s Tag-
Wiki, junit is defined as a framework, google-visualization is
defined as an API, and wxpython is defined as a wrapper.
We regard all these tags as library tags in this work.

Given a library tag t1, we first examine its correlated tags
to determine the programming language tag PL1. Let PL2

be a programming language tag which can be the same as
PL1 or be different from PL1. Let vec(x) be the tag em-
bedding of the tag x. To find the analogical library t2 for
the programming language PL2 as the library t1 for PL1,
we find the library tags t2 whose tag embedding vec(t2) is
most similar (by cosine similarity in this work) to the vector
vec(t1)− vec(PL1) + vec(PL2), i.e.,

argmax
t2∈T

cos(vec(t2), vec(t1)− vec(PL1) + vec(PL2)) (2)

where T is the set of library tags excluding t1, and cos(u, v)
is the cosine similarity of the two vectors. In practice, there
could be several analogical libraries t2 for the programming

language PL2 as the library t1 for the programming lan-
guage PL1. Thus, we select library tags t2 with the cosine
similarity in Eq. 2 above a threshold tal.

Take the library nltk (a NLP library in python) as an
example. As shown in the Fig. 4, for python, our approach
returns the analogical libraries such as textblob and gensim;
for java, our approach returns the analogical libraries such
as stanford-nlp, opennlp, and gate.

Note that tags whose tag embedding is similar to the vec-
tor vec(t1)−vec(PL1)+vec(PL2) may not always be library
tags. In our approach, we rely on the category of tags (i.e.,
categorical knowledge) to return only library tags. Similarly,
The returned library tags sometimes include libraries that
are not for the given programming language PL2. We rely
on the correlation between a library and the programming
language(s) (i.e., relational knowledge) to select the libraries
for a given programming language.

3. QUALITY OF SIMILARTECH RECOM-
MENDATIONS

To evaluate the accuracy of our tool, we use Precision@k
metric i.e., given a library, we manually check top K recom-
mendation in different programming languages. For exam-
ple, given nltk, our tool recommends analogical libraries from
the two languages (python and java). We check whether
each of the recommendations is correct according to our
knowledge or by referring to the library information on the
Web. We randomly sample 100 libraries and manually check
their corresponding recommendations. The overall preci-
sion@1 is 0.81 and the precision@5 is 0.67. In addition,
we also demonstrate that incorporating categorical and re-
lational information can significantly improve the accuracy
of the recommendations than relying solely on tag embed-
dings. More experiment details, including the evaluation of
the quality of mined relational and categorical knowledge,
can be found in our full research paper [3].

4. TOOL SUPPORT
We develop a web application called SimilarTech (https:

//graphofknowledge.appspot.com/similartech). Given a li-
brary name, our website recommends its analogical libraries
in six different programming languages. The backend of
SimilarTech is an analogical-libraries knowledge base built
with the Stack Overflow data dump that contains Stack
Overflow post data from July 31, 2008 to Aug 16, 2015.
To avoid the out-of-date results, the knowledge base can be
automatically updated periodically as the new data dump
is released.

The data dump contains 9,970,064 questions and 41,856
different tags. Among 36,197 tags in our dataset with tag-
Wiki, 7,783 tags are categorized as library tags. Our database
only stores 6,715 library tags which are used frequently enough
in Stack Overflow (more than 10 times in the current imple-
mentation) and their corresponding analogical libraries for
the top-six most frequently-asked programming languages in
Stack Overflow, i.e., java, javascript, c#, php, python and
c++.

We built this site using the Django framework in Python
and plot the asking trend of each library in D3.js. Figure 4
shows a screen shot of our web application. Given a library,
our tool attempts to recommend analogical libraries (with
the similarity to the given library above the minimal sim-



Figure 4: The scrrenshot of our website SimilarTech

ilarity threshold 0.43) for the six programming languages.
In the current implementation, SimilarTech presents up to
four libraries with the highest similarity for each program-
ming language. The rationale is that developers would be
unlikely to look through a long list of recommendations and
there are usually just a few most popular libraries for each
programming language. Note that listing up to four libraries
is only an implementation decision, not a limitation of our
approach.

For each recommended analogical library, SimilarTech

shows a brief definition extracted from the corresponding
TagWiki. Clicking a library name navigates to the analogical-
libraries page for the clicked library. This allows the user
to interactively explore the underlying analogical-libraries
knowledge base. SimilarTech also summarizes the number
of questions tagged with a library per month, and plots the
metrics over time in a so-called asking trend. The asking
trends [4] of analogical libraries allow the user to easily com-
pare the amount of the questions for each library on Stack
Overflow.

We carry out search engine optimization to our Simi-

larTech site so that it can be indexed by search engines such
as Google and Bing. We develop a program to automatically
summarize our recommendation results for each library and
put all these information into the metadata of each Simi-

larTech page. When search engines crawl our sites, they
will not only index the content inside the page, but also the
metadata of our site. As a result, search engines can rank
our websites at the top of the search results for some queries.
One example is shown in Figure 5 in which our site is ranked
the second position for the query “nltk similar libraries” on
May 5th, 2016. The metadata of this page is“8 most popular
libraries or alternatives to nltk : textblob ...”. The metadata

3We experimentally select this value as lower threshold leads
to more errors while higher one results in fewer results.

Our site

Google query

Figure 5: Our site ranks at top 2 in the Google
search for the query “nltk similar libraries”

is intuitive and user-friendly to web users as they can under-
stand what information our website provides even without
clicking. Note that only the official site of nltk ranks higher
than us. However, the nltk official site has nothing to do
with the similar libraries.

5. TOOL USAGE
We report the visit statistics of our website by Google

Analytics, and demonstrate the two typical usage scenarios
of our SimilarTech website.

5.1 The Usage of the SimilarTech Website
We release our website to the public and post this news on

several programming-related websites (e.g., http://stackapps.
com/questions/6667/). According to the Google Analytics
of the website traffic, more than 2,400 users from 99 coun-
tries visit our site, from Nov 11, 2015 to May 5, 2016. These
users on average browse 3.7 pages in each session and they
browse 10,377 pages in total4. It indicates that users are in-
terested in our results so that they explore and interact with

4As most search engine robots do not activate Javascript,



Figure 6: The visit statistics of our website from
Google Analytics

our site by visiting several pages. 13% users come back after
their first visit. Analysis of the site logs shows that users
in total browse 1,802 libraries for analogical-libraries recom-
mendation. The top 15 most-frequently visited libraries are
listed in Figure 7. The usage data of our website, albeit very
limited, demonstrates both the needs and interests in such
analogical-library recommendation that our tool supports.

5.2 Usage scenarios
After quantitative analysis of the website visit data, we

further analyze user navigation patterns in our site. Ac-
cording to our observation, there are two different navigation
patterns of user visits. These two usage patterns help ad-
dress two different information needs for software libraries.

5.2.1 Find libraries in the other languages
The primary goal of our tool is to help developers find

analogical libraries to a library for different programming
languages. The log of our website visits show that users in-
deed come to our site for such information needs, because
their first search and the subsequent click are mostly for li-
braries in different languages. Such actions represent that
given a library, users are interested in its analogical libraries
in another language. As such, they click the recommended
libraries for more details. For example, one user first types
pdfminer which is one of the most popular pdf-parsing li-
brary in Python. Then, according to the visit log, he/she
clicks pdfbox and icepdf which has the similar function but
for a different language, i.e., java.

Apart from recommending such analogical libraries, our
system sometimes may provide some serendipitous recom-
mendations, i.e., information which is useful but may be
out of the users’ expectation. For example, one user first
searches opencv (most popular computer-vision library in
c++), and he/she then clicks one of the recommendation re-
sults, marvin-framework (a image-processing library in java).
Then, he/she not only sees some similar libraries to marvin-
framework such as javacv, but also a library opencv4android
which is also a java library but specially adopted for the

robot traffic is not counted in Google Analytics [7].

Figure 7: The top 15 most-frequently visited li-
braries on SimilarTech

Android mobile system. If the user is a mobile application
developer, he/she could benefit from our recommendation.
In fact, this user shows his/her interest in the recommended
opencv4android by clicking it for more information.

5.2.2 Find libraries in one language
Besides the recommendation across different languages,

many users also use our website to find similar libraries in
the same language, which is out of our expectation. By
observing such visit logs, we find two goals for their behav-
iors. First, some users are looking for libraries with better
performance. For example, one user clicks jspdf, pdf.js and
pdfjs consecutively. As these libraries have almost the same
functionality, the user is likely comparing their performance
according their description and trend data.

Second, user can refine their initial searches and find what
they need by exploring the recommendation results. For
example, one user first searches pythonmagick (an image-
editing library in python) and then clicks python-imaging-
library (a more popular library for image processing lib in
python). Finally, he/she clicks a more specific lib called
pypng (PNG image en/decoding) which is much smaller than
the other two general libraries but may have the specific
features just satisfying his/her needs. This shows that the
process of navigating through our site can also be the process
of search refinement to find better solutions to some specific
tasks.

6. RELATED WORK
The aim of SimilarTech is to recommend analogical li-

braries across different programming languages. In contrast
to this, the great majority of research work for recommen-
dation in Software Engineering focuses on code level [17, 19]
and API level [2, 16] recommendation.

Language migration is a common phenomenon for devel-
opers as they may have to switch from one programming
language to another according to the task requirements.
The biggest challenge is usually the code and library mi-
gration, rather than learning a new language itself5. Many
researchers have proposed methods to overcome the code
migration challenge, such as code mapping [12], function
mapping [14], and API migration [18, 11]. Compared with
to these code-level migration approaches, our approach sup-
ports library-level migration.

Thung et al. [15] analyze the library co-occurrence pat-
terns in software projects to recommend relevant libraries for
a software project. Teyton et al. [13] analyze the evolution

5http://stackoverflow.com/questions/212151/



of projects’ dependencies on third-party libraries to recom-
mend libraries that can replace an existing library in a soft-
ware project. Different from these approaches, our approach
does not rely on the information about the projects’ depen-
dencies on third-party libraries. Instead, we mine analog-
ical libraries from the crowdsourced knowledge in domain-
specific Q&A sites (such as Stack Overflow). Furthermore,
existing approaches are limited to recommend libraries for
the same programming language, while our system can rec-
ommend alternative, comparable libraries across different
programming languages.

There are also some websites which support similar-tool
recommendation. SimilarWeb6 is a website that provides
both users engagement statistics and similar competitors for
websites and mobile applications. AlternativeTo7 is a social
software recommendation website in which users can find
alternatives to a given software based on user recommen-
dations. These websites can help regular web users to find
similar or alternative websites or software applications. But
their content is not useful for domain-specific information
needs of software developers, for example, to find analogical
libraries for different programming languages. In contrast,
our web application is built on software-engineering data
and is specifically designed for software developers.

7. CONCLUSION AND FUTURE WORK
In this paper, we describe a tool SimilarTech, which au-

tomatically recommends analogical libraries across different
programming languages. The automatic recommendation is
made possible by mining and incorporating semantic, rela-
tional and categorical knowledge from Stack Overflow. We
adopt the cutting-edge deep learning method in NLP appli-
cations (also known as word embeddings) to learning tag em-
beddings, which encode the semantic similarity of tags. We
further enhance the tag embeddings with software-specific
relational and categorical knowledge to better answer anal-
ogy questions in software engineering context. Given a li-
brary, our tool can recommend several most salient ana-
logical libraries for six different popular programming lan-
guages.

In the future, we will improve our web application and
analyze the website traffic and user behaviors in our website
to enhance the accuracy of analogical-libraries recommenda-
tion. Furthermore, we are very interested in extending our
approach to fine-grained level of analogy relationships, for
example, mining analogical APIs across different libraries or
programming languages in Q&A discussions or other online
resources (e.g., Github). Tens of thousands of API analogy
questions can be found on Stack Overflow, which indicates
the urgent needs for the automatic tool support at the API
level. The ability to easily find analogical APIs and their
usage examples can boost developers’ productivity and effi-
ciency when they migrate from one programming language
to another unfamiliar language.
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