
32

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites

CHUNYANG CHEN, Nanyang Technological University, Singapore
ZHENCHANG XING, Australian National University, Australia
YANG LIU, Nanyang Technological University, Singapore

Community edits to questions and answers (called post edits) plays an important role in improving content
quality in Stack Overflow. Our study of post edits in Stack Overflow shows that a large number of edits are
about formatting, grammar and spelling. These post edits usually involve small-scale sentence edits and our
survey of trusted contributors suggests that most of them care much or very much about such small sentence
edits. To assist users in making small sentence edits, we develop an edit-assistance tool for identifying minor
textual issues in posts and recommending sentence edits for correction. We formulate the sentence editing
task as a machine translation problem, in which an original sentence is “translated” into an edited sentence.
Our tool implements a character-level Recurrent Neural Network (RNN) encoder-decoder model, trained
with about 6.8 millions original-edited sentence pairs from Stack Overflow post edits. We evaluate our edit
assistance tool using a large-scale archival post edits, a field study of assisting a novice post editor, and a
survey of trusted contributors. Our evaluation demonstrates the feasibility of training a deep learning model
with post edits by the community and then using the trained model to assist post editing for the community.

CCS Concepts: • Applied computing → Text editing; • Human-centered computing → Collaborative
and social computing;

Additional Key Words and Phrases: Q&A Sites; Collaborative editing; Deep learning

ACM Reference Format:
Chunyang Chen, Zhenchang Xing, and Yang Liu. 2017. By the Community & For the Community: A Deep
Learning Approach to Assist Collaborative Editing in Q&A Sites. Proc. ACM Hum.-Comput. Interact. 1, 2,
Article 32 (November 2017), 21 pages.
https://doi.org/10.1145/3134667

1 INTRODUCTION
Stack Overflow is the most popular Question and Answering (Q&A) site for software programming.
It hosts a community of millions of developers who share and learn software programming knowl-
edge. An important reason for the popularity of Stack Overflow is that the content of Stack Overflow
posts has been well maintained by the community. After a question or answer (referred to as a
post in Stack Overflow) is posted, it can be self-edited by the post owner (i.e., the question asker or

Authors’ addresses: Chunyang Chen (chen0966@e.ntu.edu.sg), School of Computer Science and Engineering, Nanyang
Technological University, Singapore; Zhenchang Xing (zhenchang.xing@anu.edu.au), Research School of Computer Science,
Australian National University, Canberra, Australia; Yang Liu (yangliu@ntu.edu.sg), School of Computer Science and
Engineering, Nanyang Technological University, Singapore.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
2573-0142/2017/11-ART32 $15.00
https://doi.org/10.1145/3134667

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

https://doi.org/10.1145/3134667
https://doi.org/10.1145/3134667

32:2 Chunyang Chen, Zhenchang Xing, and Yang Liu

Fig. 1. An example of post edit in Stack Overflow

answerer) and/or collaboratively edited by some post editors1 (i.e., users other than the post owner).
In Stack Overflow, users with 2000+ reputation scores are considered as trusted contributors. Other
users are considered as novice contributors. Edits by post owners or trusted contributors will be
directly accepted. While Edits by novice contributors will be accepted only if they are approved by
three trusted contributors to guarantee the site quality. As of December 11, 2016, 12.3 million posts
(i.e., about 37% of all 33.5 million posts) have been edited at least once, and there have been more
than 21.8 million accepted post edits2 (see Figure 1 for an example).
Studies [21, 24] show that post editing improves the content quality. By analyzing the Stack

Overflow’s archival post edits, we find that some post editing involves complex revisions such as
adding or removing sentences, code snippets or web resources. But there are also large numbers of
post edits which involve small sentence revisions, such as correcting misspellings or grammar errors
in a sentence, or changing the word or sentence format according to the website- or domain-specific
convention. For example, Figure 1 shows a post edit with corrections of misspellings, grammar
errors and formatting. Table 1 lists more examples of different kinds of small sentence edits. Among
all 8.5 million post edits annotated with comments in Stack Overflow, 2.1 millions (24.7%)3 of them
contain keywords like “spell”, “grammar” or “format” in the comments of post edits (See Section 3.3).
Our survey of trusted contributors in Stack Overflow who has made large numbers of post edits
to their own or others’ posts further confirms the core users’ attention to small sentence edits to
improve the content quality (See Section 7).

The presence of a large number of small sentence edits and the attention of trusted contributors
to such edits motivate us to investigate a post edit assistance tool for identifying minor textual
issues in posts and recommending proper corrections, such as those shown in Figure 1 and Table 1.
Our analysis of “who edited posts” (see Section 3.2) reveals that 65.77% of all accepted post edits
are self-edits by the post owners and 34.23% are collaborative edits by some post editors. Among
collaborative edits, 89% are done by trusted contributors and 11% are done by novice contributors.
Therefore, an edit assistance tool will not only help post owners reduce minor textual issues before
posting their questions and answers, but also help post editors improve their editing efficiency.
Furthermore, the identified issues together with the recommended corrections will help novice
post editors learn community-adopted editing patterns.

To determine the required tool support, we conduct a formative study to understand the categories,
editing reasons and scale of changes of post edits in Stack Overflow. As shown in Table 1, some
sentence edits (row 1-5) is to fix general language issues, such as misspellings, grammar errors,
sentence formatting issues. Some general language issues can be resolved by spell checking tools
1https://stackoverflow.com/help/editing
2Hereafter, post edits refer to accepted post edits, unless otherwise stated.
3This number could be highly underestimated as there are many similar words which are not taken into account, such as
“typo”, “wording”, “indentation”, etc. See Figure 3.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites 32:3

Original Sentence Edited Sentence Editing Reason
1 I need to get the last char of a srting. I need to get the last char of a string. Spelling
2 Is it possible to this? Is it possible to do this? Grammar
3 Can you suggest me Can you suggest me? Punctuation
4 Any ideas how to fix it ? Any ideas how to fix it? Space
5 how can I accomplish this? How can I accomplish this? Capitalization
6 My problem is the when I click on the OK button, nothing happens. My problem is the when I click on the ` OK ` button, nothing happens. Annotation
7 EDIT: Sorry, I should have inserted the term "cross browser" somewhere. **EDIT**: Sorry, I should have inserted the term "cross browser" somewhere. Annotation
8 1) How to connect to SVN server from java? How to connect to SVN server from java? HTML
9 I want an Apple script that refreshes a certain song in iTunes from file. I want an AppleScript that refreshes a certain song in iTunes from a file. Spelling
10 I am trying to parse a set of xml files. I am trying to parse a set of XML files. Capitalization
11 Use javascript function isNaN. Use JavaScript function isNaN. Capitalization

Table 1. Examples of small sentence edits in Stack Overflow

like LanguageTool4. However, due to the lack of domain knowledge, general spell checkers often
make mistakes, such as changing css (acronym for Cascading Style Sheets) to CBS, json (acronym
for JavaScript Object Notation) to son, or li (an HTML tag) to Ali. Furthermore, there are many
sentence edits beyond general language issues, such as site-specific formatting style (row 6-8) and
domain-specific naming convention (row 9-11). For example, when mentioning a User Interface
(UI) component (e.g., the OK button), the community prefers to quote the component name. When
listing items, the community prefers to use Markdown language5 (e.g., HTML). Software-
specific names should be mentioned according to the domain-specific convention, like AppleScript
rather than Apple script.
Considering the devisity of words and formats involved in sentence edits, it would require

significant manual effort to develop and validate a complete set of rules for representing editing
patterns. For example, OK should be quoted when it refers to an UI component, but it will not be
quoted in many other contexts. It is impractical to enumerate all such cases.

Alternatively, machine learning techniques can be used to learn sentence editing patterns from
archival post edits. In this work, we formulate sentence editing as a machine translation problem,
in which an original sentence is “translated” into an edited sentence. We solve the problem using
the RNN encoder-decoder model [9]. As we observe that the majority of post edits involves only
character-level changes of post content, we decide to use a character-level RNNmodel. Furthermore,
we develop a normalization method for preprocessing and postprocessing domain-specific rare
words (e.g., URLs, API calls, variable names) in posts before and after the RNN model training.
To train the RNN model, we develop a text differencing algorithm to collect a large dataset of
original-edited sentence pairs from post edits, such as those shown in Table 16. The trained RNN
model detects and encodes editing patterns from original-edited sentence pairs, thus removing the
need for prior manual editing rule development.

We evaluate the quality of sentence editing recommendations by our approach with large-scale
archival post edits. Our approach outperforms the LanguageTool (a rule-based proof-reading tool
that has been developed for over 10 years) and a phrase-based SMT technique [31] specially designed
for sentence correction. We also conduct a field study in which the first author acts as a novice
post editor that has little post editing experience. Based on the sentence editing recommendations
by our tool, he edits 39 posts, 36 of which have been accepted. That is, for each accepted post edit,
at least three trusted contributors consider that the edit has significantly improved the post quality.
Finally, we collect 58 replies in a survey of trusted contributors who has made large numbers of
post edits. These replies shed the light on the trusted contributors’ opinions and suggestions for
our tool.

4https://languagetool.org/
5http://stackoverflow.com/editing-help
6Edits in Table 1 are underlined for the explanation purpose. The RNN model does not know such sentence edits in advance.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

32:4 Chunyang Chen, Zhenchang Xing, and Yang Liu

We make the following contributions in this paper:

• We conduct a formative study of post editing in Stack Overflow and a survey of trusted
contributors’ attention to small sentence edits, which help us understand the need for an
edit assistance tool and who can benefit from the tool in which scenarios.
• We develop a RNN-based edit assistance tool for identifying spelling, grammar and formatting
issues in Stack Overflow posts and recommending corrections. The tool learns editing patterns
from big data of accepted archival post edits and makes special considerations of the data
characteristics of post edits. To the best of our knowledge, our dataset is the largest dataset
that has ever been collected for sentence editing task.
• We evaluate our approach from three perspectives, including the quality of sentence editing
recommendations using large-scale archival post edits, the ability to assist a novice post
editor in editing unfamiliar posts, and the feedbacks of 58 trusted contributors on our tool.

2 RELATEDWORK
Wikipedia-like collaborative editing has been adopted in Stack Overflow to ensure the content
quality on the site [24]. Existing studies investigate the general implications of collaborative editing
in large-scale social computing system. For example, Vargo and Matsubara [35] investigates how
different users behave in a system that contains gamified motivations for contributing edits. Li et
al. [21] examines the trade-offs between managing quality and encouraging contributions. They
show that collaborative editing significantly and robustly improves the votes received, the number
of answers received for questions, the likelihood of questions getting accepted answers, and the
likelihood of answers being accepted, but it barely decreases the users’ subsequent contributions.
Different from existing studies, our formative study of post editing in Stack Overflow examines
who edits posts and the categories, editing reasons and scale of changes of post edits, which reveals
the need for and the benefits of a specific tool support to assist post editing.
Machine learning techniques have been developed to assist collaborative editing in online

communities. For example, Li et al. [20] trained a classifier to predict whether a post needs an
edit. Wikipedia develops the Objective Revision Evaluation Service (ORES) [1] to separate blatant
vandalism from well-intentioned changes in the edit review process. Our edit assistance tool is
different as it works at a much finer-grained level. Instead of classifying posts or post edits, our
tool identifies spelling, grammar and formatting issues in sentences and recommends sentence
edits to fix the identified issues.

Much research has been carried out to correct spelling and grammar errors using machine learn-
ing techniques. Junczys-Dowmunt and Grundkiewicz [16] adopt phrase-based Statistical Machine
Translation (SMT) method for automatic grammar error correction. Mizumoto and Matsumoto [26]
and Yuan et al. [41] propose a ranking method to rank the SMT’s recommendations of grammar
error corrections. However, SMT focuses on source-target phrase pairs without effective modeling
sentence context. Furthermore, SMT consists of components that are trained separately and then
combined [18]. Compared with traditional SMT methods, Neural Machine Translation (NMT),
such as RNN-based methods [25, 38], models sentence context and all the NMT components are
trained jointly to maximize the performance. Especially, NMT is appealing for Grammatical Error
Correction (GEC) tasks as it may correct erroneous sentences that have not been seen in the training
data. Therefore, our edit assistance tool adopts a RNN encoder-decorder model [9].
Other researchers also adopt deep learning methods for grammatical error detection [22, 34]

and sentence correction [10, 39, 40]. Although these methods obtain better performance than
traditional SMT methods, they cannot effectively deal with the three data characteristics of Stack
Overflow post edits. First, existing methods are designed for general English text. They cannot

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites 32:5

0

1

2

3

4

5

6

2008 2009 2010 2011 2012 2013 2014 2015 2016

Co
un

ts
M
ill
io
ns

Year

Post
Body Edit
Title Edit
Tags Edit

Fig. 2. The numbers of posts and three kinds of post edits in each year in Stack Overflow

handle domain-specific rare words, such as URLs, API calls and variable names in Stack Overflow
posts, due to the rareness of such domain-specific words and the much noise these words introduce
to the sentence correction model. But simply throwing away these domains-specific rare words
will negatively influence the quality of sentence editing model because it breaks the sentence
integrity. Second, existing methods consider only general language errors that are only part of
post edits in Stack Overflow. They cannot handle the format change such as HTML markdown
and domain-specific naming convention. Third, existing methods deal with word- or phrase-level
correction, but the majority of post edits involves only minor changes of post content at character
level.
Another big limitation of existing NMT methods is the lack of editing data for training deep

learning methods. The Helping Our Own task [12] contains 1264 edits for model training and
1057 edits for testing. The CoNLL-2014 task [30] on GEC contains 57151 edited sentence pairs
for training and 1312 for testing which are collected from essays written by students at National
University of Singapore. To mitigate the lack of data, Liu et al. [13, 22] propose different ways
of artificial error generation, but such generated edits may differ from the real data. We are the
first to leverage the big data of post edits in Q&A sites to train an edit assistance tool for sentence
correction. And our training data is 100 times larger than the largest dataset of existing work [39].

3 FORMATIVE STUDY OF POST EDITING IN STACK OVERFLOW
Stack Overflow is selected as our study subject, not only because of its popularity and large user
base [7, 8], but also because it is a well-known online Q&A site which supports collaborative
editing [21, 24]. We download the latest data dump7 of Stack Overflow which contains 33,402,449
posts (including 12,865,526 questions and 20,536,823 answers) and all post edits since the launch of
Stack Overflow in 2007 to December 11, 2016. Based on this large dataset, we carry out an empirical
study of post edits in Stack Overflow to understand the characteristics of post editing in Stack
Overflow and to motivate the required tool support.

3.1 What has been edited?
In Stack Overflow, there are three kinds of post information which can be edited, i.e., question tags,
question title, and post body [21]. Question-title and post-body editing are of the same nature (i.e.,
sentence editing), while question-tags editing is to add and/or remove the set of tags of a question.

As of December 11, 2016, there have been in total 21,759,565 post edits. Among them, 1,857,568
(9%) are question-title edits, 2,622,955 (12%) are question-tag edits, and the majority of post edits
(17,279,042 (79%)) are post-body edits. The tags of 2,246,658 (17.5%) questions, the titles of 1,630,933
(12.7%) questions, and the body of 11,205,822 (33.5%) posts have been edited at least once. Figure 2

7https://archive.org/download/stackexchange

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

32:6 Chunyang Chen, Zhenchang Xing, and Yang Liu

Fig. 3. The word cloud of the top 50 most frequent words appearing in edit comments (the words are aligned
alphabetically from left to right)

shows that the number of post edits increases as the number of posts increases over time. The
number of question-title and question-tag edits increase slowly, while the number of post-body
edits increase in a similar rate as posts increase.
Overall, post-body and question-title edits make up the majority of post edits. Compared with

adding/removing question tags, post-body and question-title editing are more complex (further
studied in the next question). Therefore, we focus on post-body and question-title edits in this
work. Hereafter, post edits refer to post-body and question-title edits, unless otherwise stated.

3.2 Who edited posts?
Among all 19,136,610 post-body and question-title edits, 12,586,199 (65.77%) are self-edits by the
post owners, 5,806,880 (30.34%) are collaborative edits by trusted contributors, and 743,531 (3.89%)
are collaborative edits by novice contributors. This data suggests that an edit assistance tool may
benefit the Stack Overflow community from three perspectives.

First, the tool can highlight the textual issues in the posts that the post owners are creating and
remind them fixing the issues. This helps to get the posts right in the first place and reduce the need
for after-creation editing. Second, trusted contributors make up only 9% of Stack Overflow users
but they take up 30.34% of post editing tasks. An edit assistance tool that recommends sentence
edits can improve the editing efficiency of trusted contributors. Third, the approved edits by novice
editors is rather low. This could be because novice editors do not have enough experience and
courage to edit others’ posts, or their edits are incorrect and rejected by trusted contributors. It
also suggest that an edit assistant tool would be beneficial if novice editors would like to use
small edits as a mechanism for legitimate peripheral participation, because an edit assistance tool’s
edit recommendations can serve as a “tutor” to teach novice contributors the community-adopted
editing patterns. This may help to on-board novice contributors in Stack Overflow and improve the
quality of their post edits.

3.3 What are post edits about?
According to the Stack Overflow’s edit guidelines8, there are four common types of edits: 1) to fix
grammatical or spelling mistakes, 2) to clarify the meaning of a post without changing it, 3) to
correct minor mistakes or add addendums/updates as the post ages, 4) to add related resources or
hyperlinks.
We analyze the comments of post edits to understand what post edits are about and whether

they align with the community guideline. In Stack Overflow, when users finish editing a post, they
can add a short comment to summarize the post edit. We collect all post-edit comments and apply
8http://stackoverflow.com/help/privileges/edit

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites 32:7

5.48% 6.73% 9.60% 18.72%
45.75%4.21% 6.16%

9.24%

16.02%

55.28%

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Co
un

ts
M
ill
io
ns

Similarity

title body

Fig. 4. The count of original-edited post title and body in different similarity range

standard text processing step to post-edit comment such as removing punctuation, lowercasing all
characters, excluding stop words, stemming. Then we count the word frequencies and we display
the top 50 most frequent words in a word cloud [36] in Figure 3. The font size of a word depends
on the word frequency9 in our dataset.
According to these comments, it can be seen that post edits have covered four common edit

types in the guideline, such as “spelling”, “typo”, “grammar” for the type (1), “clarification”, “de-
tails”, “explanation’ for type (2), “fixes”, “errors”, “changes” for type (3), and “links”, “information”,
“image” for type (4). Apart from them, there are also some other keywords, such as “formatting”,
“indentation”, “highlighting”, “capitalization”, and “readability”. Although formatting, grammar
and spelling types of edits are not about post mistakes or additional/updated resources, they are
still crucial for readers as these edits can make the posts easier to read and understand. Table 1
lists some examples of formatting, grammar and spelling edits. In fact, the word cloud shows that
formatting, grammar and spelling types of edits happen more frequently than other types of edits.

3.4 What is the scale of changes that post edits involve?
When editing a post, users may change some words, delete a sentence, add some sentences or
code snippets according to different goals or context. To understand the scale of changes that post
edits involve, we measure the similarity between the original post before a post edit and the edited
post after the edit. Given a post edit, let oriдinal and edited be the text content (question title or
post body) of the original and edited post. We use the text-matching algorithm [5] to find the
character-level Longest Common Subsequence (LCS) between the oriдinal and edited content. We
measure the similarity between the original and edited post as:

similarity(oriдinal , edited) = 2 ∗ Nmatch

Ntotal
(1)

where Nmatch is the number of chars in the LCS and the Ntotal is the total number of all chars in
both the oriдinal and edited content. The similarity score is in the range of 0 to 1. The higher the
similarity score, the less changes between the original and edited post.
As shown in Figure 4, among the 17,279,042 post-body edits, the original and edited post body

of 55.28% edits are very similar with the similarity score between 0.9 and 1. 16.01% of them are
between 0.8 to 0.9. Similarly, among 1,857,568 question-title edits, 64.47% of them are between 0.8
and 1. This indicates that most of the post edits involve only minor scale of changes of question
titles and post bodies.

Summary: Our study shows that there is a large number of formatting, grammar and spelling
types of post edits that involve minor scale of changes of post content. Assisting these types of post
edits would benefit the post owners, trusted contributors and novice contributors from different

9We normalize the frequency in logarithm to avoid the extreme large word size in the figure.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

32:8 Chunyang Chen, Zhenchang Xing, and Yang Liu

Original
posts

Edited
posts

Original
sentences

sentence
segmentation

sentence
segmentation

Edited
sentences

char
tokenization

char
tokenization

RNN
Encoder

RNN
Decoder

training Editing
model

Original sentence

Edited sentence

Training
data

Training
data

sentence
normalization

sentence
normalization

Alignmentstack overflow

Fig. 5. The overall workflow of our approach

perspectives. To be effective, the edit assistance tool must be able to handle the diversity of post
editing patterns and the character-level changes that post edits often involve.

4 ASSISTING SENTENCE EDITING
Based on the empirical observation of post edits in Stack Overflow, we focus our effort in this work
on sentence edits that correct minor textual issues in a sentence, such as those shown in Figure 1
and Table 1. Considering the diversity of post editing patterns, it would require significant effort
to manually develop a complete set of editing patterns which is time-consuming and error-prone.
Therefore, we propose a deep-learning based approach which can automatically detect and encode
sentence editing patterns from large numbers of archival post edits using a RNN encoder-decoder
model [9].

4.1 Approach Overview
The overall workflow of our approach is shown in Figure 5. Our approach aligns the sentences of
the original and edited posts for preparing a large corpus of original-edited sentence pairs for model
training (Section 4.2). To reduce the negative effects of domain-specific rare words on the model, our
approach normalizes the sentences by replacing domain-specific rare words (such as URLs, APIs,
variable names) by special symbols (Section 4.4). To model character-level changes of post edits like
formatting, grammar, spelling, our approach trains a character-level RNN encoder-decoder model
with a large parallel corpus of original-edited sentence pairs (Section 4.3). The trained sentence
editing model can identify minor textual issues (both general and domain-specific) in an original
sentence and recommend corrections of these issues. Next, we will describe the core steps of our
approach.

4.2 Collecting the Corpus of Original-Edited Sentence Pairs
A post may have been edited several times. Assume a post has N versions, i.e., undergoing N − 1
post edits. For each post edit i (1 ≤ i ≤ N − 1), we collect a pair of the original and edited content.
The original content is from the version i of the post before the edit, and the edited content is from
the version i + 1 of the post after the edit. The edited part can be question title or post body. As
this work focuses on sentence edits, we remove code snippets by HTML tags “< code >” from the
collected content. Then, we split the content into sentences by punctuation such as “.”, “?”, “!” and
“;”.

The Algorithm 1 aligns the sentence list oList from the original content and the sentence list
eList from the edited content. It finds the LCS of matched (lines 4-10) and unmatched-but-similar-
enough (lines 11-23) sentences between the two input sentence lists. For the two unmatched
sentences, computeSimilarity() computes the char-level LCS of the two sentences [5] and measures
the sentence similarity using the Eq. 1. For a sentence in the oList , if the similarity score larдestScore
of the most similar sentence in the eList is above a threshold sim_threshold , the two sentences
are aligned as a pair of original-edited sentences. Similarity threshold should be set to achieve a

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites 32:9

ALGORITHM 1: Collect original-edited sentence pairs from post edits
Input: Two sentence lists oList (original) and eList (edited)
Output: A list of original-edited sentence pairs pList
Init oIndex ← 0, eIndex ← 0;
while oIndex < oList.length && eIndex < eList.length do

Init larдestScore ← −1, topPosition ← −1;
for i ∈ [eIndex, eList.length-1] do

if oList[oIndex] == eList[i] then
eIndex = i + 1;
larдestScore = 1;
break;

end
end
if larдestScore! = 1 then

for i ∈ [eIndex, eList.length-1] do
similarity = computeSimilarity(oList[oIndex], eList[i]);
if similarity > larдestScore then

larдestScore = similarity;
topPosition = i;

end
end
if largestScore > sim_threshold then

pList .append([oList[oIndex], eList[topPosition]]);
eIndex = topPosition + 1;

end
end
oIndex = oIndex + 1;

end

balanced precision and recall for sentence alignment, so we experimentally set the threshold at 0.8
in this work. The algorithm outputs all aligned original-edited sentence pairs.

From the post edits before Dec 11, 2016, we collect 13,806,188 sentence pairs. But there are two
common problematic kinds of sentence pairs in the dataset. First, some sentence pairs are code
snippets which are not enclosed inside < code > HTML tag. Such code-snippet sentences are not
in the scope of our study. We exclude code-snippet sentences if sentences contain programming
constructs such as “{”, “}”, “=”, “if(”, “for(”, “while(”. Second, sometimes a post is edited by one user,
but then is edited back into its original content by another user. We cannot decide which one of the
edits is more suitable. Therefore, we exclude such sentence pairs. After post-processing, 7,545,979
sentence pairs are left, which are used to train the RNN encoder-decoder model for automatic
sentence editing.

4.3 Character-Level RNN Encoder-Decoder Model
Recurrent Neural Network (RNN) is a class of neural networks where connections between units
form directed cycles. Due to its nature, it is especially useful for tasks involving sequential inputs
such as speech recognition [14] and sentence completion [25]. Compared with traditional n-gram
language model [6], a RNN-based language model can predict a next word by preceding words with
variant distance rather than a fixed number of words. This makes it possible to model long-distance
dependencies in the sentence.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

32:10 Chunyang Chen, Zhenchang Xing, and Yang Liu

= …
W

…
ܹ ܹ 																								ܹ 																					ܹ

o ௧ିଵ ௧ ௧ାଵ

x ݔ௧ିଵ ௧ݔ ௧ାଵݔ						

݄௧ିଵ ݄௧ ݄௧ାଵ

			ܷ																																																																											ܷ 																							ܷ 																							ܷ

ܸ ܸ 																							ܸ 																							ܸ

output layer

hidden layer

input layer

Fig. 6. Basic RNN model
i s SPACE j a v e SPACE o o .

		݄ଵ

ଵݔ		

		݄ଶ

ଶݔ		

		݄ଷ

ଷݔ		

		݄

ݔ		

		݄ହ

ହݔ		

		݄ସ

ସݔ		

		݄

ݔ		

		଼݄

଼ݔ		

		݄ଽ

ଽݔ		
C

		݄ଵ

ଵݕ		

		݄ଶ

ଶݕ		

		݄ଷ

ଷݕ		

		݄ସ

ସݕ		

		݄ହ

ହݕ		

		݄

ݕ		

		݄

ݕ		

		଼݄

଼ݕ		

		݄ଽ

ଽݕ		

		݄ଵ

ଵݕ		

I s SPACE J a v a SPACE O O ?Encoder

Decoder

		݄ଵ

ଵݔ		

		݄ଵଵ

ଵଵݔ		

		݄ଵଵ

ଵଵݕ		

Fig. 7. The RNN encoder-decoder model

The architecture of a basic RNN model includes three layers. An input layer maps each word to a
vector using word embedding or one-hot word representation. A recurrent hidden layer recurrently
computes and updates a hidden state after reading each word. An output layer estimates the
probabilities of the next word given the current hidden state. Figure 6 shows the unfolding in time
of the RNN’s forward computation. At time step t , it estimates the probability of the next word
P(wt+1 |w1, ...,wt) by three steps. First, the current wordwt is mapped to a vector xt by the input
layer.

xt = input(wt) (2)
Then, the hidden layer generates the hidden state ht according to the previous hidden state ht−1
and the current input xt

ht = ht−1 ∗W + xt ∗U (3)
whereW , U are parameters inside the neural network. Finally, the P(wt+1 |w1, ...,wt) is predicted
according to the current hidden state ht :

P(wt+1 |w1, ...,wt) = д(ht) (4)

where the functionд produces valid probabilities. During model training, the parameters are learned
by backpropagation [37] with gradient descent to minimize the error rate.

More complex RNN-based models have been developed for more complex NLP tasks. For example,
the RNN encoder-decoder model [9] is commonly adopted for machine translation tasks. This
model includes two RNNs as its main components: one RNN to encode a variable-length sequence
into a fixed-length vector representation, and the other RNN to decode the given fixed-length vector
representation into a variable-length sequence. From a probabilistic perspective, this model is a
general method to learn the conditional distribution over a variable-length sequence conditioned
on yet another variable-length sequence, i.e., p(y1, ...,yT ′ |x1, ...,xT). The length of the input T and
output T ′ may differ.
The architecture of our character-level RNN encoder-decoder model is shown in Figure 7. The

example is to edit “is jave oo.” to “Is Java OO?” in which “OO” is the abbreviation of “Object
Oriented”. The encoder is a basic RNN model that reads each character of an original sentence x
sequentially. This work focuses on sentence edits that involve many character-level changes such
as misspellings, capitalizations, annotations. Furthermore, the character-level model can avoid the
out-of-vocabulary problem [4, 23] because there are countless words, but only limited characters.
Therefore, we use the character-level RNN model instead of the normal word-level one. As the
model reads each character sequentially, the hidden state of the RNN encoder is updated according

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites 32:11

Original: pls check https://docs.python.org/2/library/itertools.html#itertools.groupby for itertools.groupby() …

Preprocess: pls check ܷܰܮܴܷ_ܭଵ for ܷܰܫܲܣ_ܭଵ…

Edited: Please check	ܷܰܮܴܷ_ܭଵ for ܷܰܫܲܣ_ܭଵ…

Post-process: Please check https://docs.python.org/2/library/itertools.html#itertools.groupby for itertools.groupby() …

Fig. 8. The process to deal with domain-specific rare words

to Eq. 3. After reading the end of the the input, the hidden state of the RNN encoder is a vector c
summarizing the whole input original sentence.

The decoder of the model is another RNN which is trained to generate the output edited sentence
by predicting the next word yt given the hidden state h(t). Unlike the basic RNN model in Figure 6,
yt and ht are not only conditioned on yt−1 but also on the summary vector c of the input sentence.
Hence, the hidden state of the decoder at time t is computed:

ht = f (ht−1,yt−1, c) (5)

and the conditional distribution of the next character is

P(yt |(w1, ...,wt−1), c) = д(ht ,yt−1, c) (6)

for the given activation functions f and д. The two RNN components of the RNN encoder-decoder
model are jointly trained to maximize the conditional log-likelihood

max
θ

1
N

N∑
n=1

logpθ (yn |xn) (7)

where θ is the set of the model parameters and each (xn ,yn) is a pair of original-edited sentences
from the training corpus.

4.4 Normalizing Domain-Specific Rare Words
The performance of deep learning models heavily depends on the quality of the training data. In
particular, our RNN-based model relies on patterns of character sequences. However, in domain-
specific Q&A text like Stack Overflow discussions, many terms are problem-specific or external
resources, such as URLs of online documents (e.g., http://support.microsoft.com/kb/299853), API calls (e.g.,
document.getElementById(’whatever’)) and variable names (e.g., pages[0]). According to our observation,
these specific terms usually have few errors because developers are more careful and sensitive
when mentioning API/variable names than other general text. For the URL links, most of them are
put into the text by copy-paste which rarely lead to errors.

However, when dealing with such special character sequences, the RNN encoder-decoder model
cannot learn meaningful patterns effectively due to their rareness and diversity in text. Furthermore,
these problem-specific and resource terms will negatively influence the quality of sentence editing
model because they introduce noise to other normal words. But simply throwing away these
domains-specific rare words will also negatively influences the quality of sentence editing model
because it breaks the sentence integrity. Therefore, we normalize mentions of such domain-specific
rare words in the training sentences to simplify the model complexity.
The normalization process first detects mentions of domain-specific rare words by regular

expressions. Each detected mention in the original and edited sentence will be marked by a unique
special symbol. For Stack Overflow sentences, we develop regular expressions for detecting URLs by
http:// or https:// , API calls byAPI conventions like a.b(c) (Java/Python) or a::b(c) (C/C++), and array/list
variables by a[]. As the example in the Figure 8 shows, https://docs.python.org/2/library/itertools.html#itertools.groupby

and itertools.groupby() are marked as UNK_URL1 and UNK_API1 after normalizing the training

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

32:12 Chunyang Chen, Zhenchang Xing, and Yang Liu

original-edited sentences. UNK_URLindex , UNK_APIindex , or UNK_VARIABLEindex are special
symbols where index is the unique index of an URL/API/variable in the training corpus.
The normalized sentence pairs are used to train the RNN encoder-decoder model. Given an

original sentence to be edited, the trained model will change it into an edited sentence. The special
symbols are then mapped back to the original domain-specific words in a post-processing step.

4.5 Implementation
Slightly different from the model in Figure 7, our implementation of the RNN encoder-decoder
model consists of 3 hidden layers, i.e., deeper model structure for better learning. In each hidden
layer, there are 1024 hidden units to store the hidden states. We implement our model based on the
Tensorflow [2] framework and train the model in a Nvidia M40 GPU (24G memory) for about 6
days.

5 THE QUALITY OF RECOMMENDED SENTENCE EDITS
Our edit assistance tool aims to help post owners and editors edit posts by identifying textual issues
in sentences and recommending small sentence edits for correcting these issues. The quality of
recommended sentence edits will affect the adoption of the tool by the community. In this section,
we use randomly selected 377,298 original-edited sentence pairs from archival post edits to evaluate
the quality of recommended sentence edits by our tool.

5.1 Dataset
From the accepted 19,136,610 post edits, we collect 7,545,979 original-edited sentence pairs. We
randomly take 6,791,381 (90%) of these sentence pairs as the training data, 377,298 (5%) as the
development data to tune model hyperparameters, and 377,298 (5%) as the testing data to evaluate
the quality of recommended sentence edits by our tool.

5.2 Baseline Methods
Apart from our own model, we take another two methods as baselines for comparison. One baseline
is the LanguageTool10, an open source proof-reading program for more than 20 languages. This
tool’s style and grammar checker is rule-based and has been developed for over 10 years. The other
baseline is the phrase-based SMT model specifically designed for sentence correction [31]. We use
the same training data to train the SMT model.

5.3 Evaluation metric
Our task can be regarded as a domain-specific GEC task, as it deals with the site- and domain-specific
formatting, grammar and spelling knowledge. Therefore, we adopt GEC metrics for evaluating our
approach.
Precision and recall have been traditionally used to evaluate the performance of GEC ap-

proaches [11, 12]. Given a sentence, precision measures the percentage of edits suggested by
a tool that are correct, and recall measures the percentage of correct edits that are suggested by the
tool. Precision and recall require manually-annotated gold-standard edits, such as insert, deletion,
replacement, tense change, etc., in the sentences [30]. For example, the underlined text in the
reference sentences in Table 2 are manually annotated gold-standard changes for the corresponding
original sentences. However, the difficulty of defining error types and the disagreement between
annotators often challenge the annotation validity as a gold standard [33]. This is especially the case

10https://languagetool.org/

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites 32:13

Original Sentence how do i make a file handle from a file path specified on the command line? Would you recommend Java/J2EE, .Net / Erlang ?
Edits by a tool How do I make a file handle from a file path specified on the command line? Would you recommend Java/J2EE, .NET / Erlang ?
Reference How do I make a filehandle from a file path specified on the command line? Would you recommend Java/J2EE, .NET or Erlang?
GLEU score 48.36 27.08

Table 2. GLEU score for different edits

for our data, considering the large number of techniques and concepts that have been discussed in
Stack Overflow and the varieties of sentence edits that have been applied.
In the GEC field, recent released shared tasks have prompted the development of GLEU [27,

28] (Generalized Language Understanding Evaluation11) for evaluating GEC approaches. GLEU
is a customized metric from the BLEU (BiLingual Evaluation Understudy) [32] score which is
widely used to evaluate the machine-translation quality. It is independent of manual-annotation
scheme and requires only reference sentences (without annotations of gold-standard edits). Recent
studies [29, 33] show that GLEU has the strongest correlation with human judgments of GEC
quality and effort, compared with precision and recall.
Therefore, we adopt GLEU in our evaluation. We regard an original sentence as the source

sentence (S), the edited sentence by Stack Overflow user as the reference sentence (R), and the
edited sentence generated by a GEC tool as candidate sentence (C). GLEU score measures how
close a candidate sentence generated by the tool is to the reference sentence edited by human, with
respect to the source sentence. Intuitively, GLEU awards the overlap between C and R but not in
S , and penalizes n-grams in S that should have been changed but are not and n-grams found in S
and C but not in R. It also captures the sentence length and the fluency and adequacy of n-gram
overlap. GLEU is computed as:

GLEU (S,R,C) = BP · exp(
N∑
n=1

wn logpn) (8)

where pn is the number of n-gram matches between the candidate sentence (C) and the reference
sentence (R), minus the sum of positive difference of n-gram matches between candidate-source
sentences (C, S) and candidate-reference sentences (C,R), divided by the number of n-grams in the
candidate sentence (C):

pn =

∑
nд∈{C∩R } countC,R (nд) −

∑
nд∈{C∩S }max[0, countC,S (nд) − countC,R (nд)]∑

nд∈C count(nд)
(9)

where nд ∈ {A∩B} are common n-grams in sentenceA and B, and countA,B (nд) is the minimum
occurrence number of n-grams in A and B. n = 1, ...,N where N is the maximum number of grams
to be considered.wn is the weight of pn . We set N to 4 which is a common practice in the machine
translation and grammatical error correction literature, and set allwn =

1
N . BP is a brevity penalty

which penalizes short candidate sentence (that may have a higher pn due to the small number of
n-grams in the sentence).

BP =

{
1 c > r

e(1−
r
c) c ≤ r

(10)

where r is the length of the reference sentence, and c is the length of the candidate sentence.
GLEU is expressed a percentage value between 0 and 100. The higher the GLEU, the closer the

candidate sentence is to the reference sentence. If the candidate sentence completely matches the
reference sentence, the GLEU is 100.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

32:14 Chunyang Chen, Zhenchang Xing, and Yang Liu

Method GLEU
RNN encoder-decoder 57.44
LanguageTools 51.93
SMT 46.85

Table 3. The performance of different methods for sentence editing

Original Sentence Our RNN Encoder-Decoder LanguageTool Phrase-based SMT
1 What I did wrong? What did I do wrong? What I did wrong? What I did wrong?
2 pls help me.. Please help me.. Pls help me. Please help me.
3 However, you show use CSS for this. However, you should use CSS for this. However, you show use CBS for this. However, you use for this.
4 I’m thinking it has something to do with the json. I’m thinking it has something to do with the JSON. I’m thinking it has something to do with the son. I’m thinking it has something to do with the JSON.
5 Inside the li tag we have many options to select. Inside the ` li ` tag we have many options to select. Inside the Ali tag we have many options to select. Inside the tag we have many options to select.
6 Here selectedShape is either circle or polygon. Here ` selectedShape ` is either circle or polygon. Here selectedShape is either circle or polygon. Here selectedShape is circle or polygon.
7 Edit: By the way, this is my first time using the community wiki; **Edit:** By the way, this is my first time using the community wiki; Edit: By the way, this is my first time using the community wiki; Edit: By the way, this is my first time using the wiki;
8 It looks a s if the Large image is taking up all the space. It looks as if the Large image is taking up all the space. It looks an s if the Large image is taking up all the space. It looks as if the **Large** is taking up all the space.
9 Below the code i use to validate a user login outside magento. Below the code I use to validate a user login outside magento. Below the code i use to validate a user logic outside magenta. the code I use to validate user login outside magento2.
10 How to find hte library dependency? How to find the library dependency? How to find Rte library dependency? How to find the library dependency..?

Table 4. Examples of sentence edits by different methods

5.4 Evaluation Results
We report out evaluation results by answering the following two research questions.

5.4.1 What is the quality of recommended sentence edits by our method? How much improvement
can it achieve over the baseline methods?
Table 3 presents the GLEU score of different methods for sentence editing tasks in the testing
dataset of 377,298 sentences. Our RNN encoder-decoder model achieves the best overall result
with the average GLEU score 57.44. The average GLEU of the SMT is only 46.85, and the average
GLEU of the LanguageTool is 51.93. According to the literature of machine translation [38, 42] and
grammar error correction [26, 41], the improvement in the GLEU score by our model represents a
significant improvement over the two baseline methods.

GLEU score is a relative strict evaluation metric, i.e., any editing mistake may lead to large decay
of the GLEU score. Consider the original sentence “how do i make a file handle from a file path specified on the

command line?” in Table 2. There should be three edits: how to How, i to I, and file handle to filehandle,
as seen in the reference sentence. Our RNN model suggests the first two edits, but misses the third
edit. But the GLEU score is only 48.36. Similarly, for the other sentence “Would you recommend Java/J2EE,

.Net/Erlang?”, our RNN model suggests one edit, but miss the other edit. The GLEU score is only 27.08.
However, compared with precision (100% in both examples) and recall (66.7% and 50% respectively),
GLEU can better reflect editing quality with respect to editing effort required.
To qualitatively understand the strengths and weakness of different methods, we randomly

sample about 600 sentences for manual inspection. Table 4 lists some representative categories of
examples in which our method outperforms the two baseline methods. Due to the page limitation,
other examples (both high-quality and low-quality) can be found online12. We can see that compared
with the two baseline methods, our model can carry out relatively complex edits (e.g., the first
example) and domain-specific word and site-specific formatting (e.g., the 4th, 5th, 6th and 7th
examples). In such cases, the LanguageTool mostly preserves the original sentences because it does
not have rules for them. Even worse, because many domain-specific words (e.g., css, json, magento)
are out of its vocabulary, the LanguageTool may regarded them as typos of some general words
and make erroneous edits, such as CBS for css (the 3rd example), son for json (the 4th example),
magenta for magento (the 9th example).

The SMT can edit some domain-specific words (e.g., json to JSON in the 4th example). But it often
preserves the original sentences that should be edited (e.g., the 1st and 7th examples), removes
words that should not be removed (e.g., the 3rd, 5th and 6th examples), formats the sentence (e.g.,

11https://github.com/cnap/gec-ranking
12http://tagreorder.appspot.com/sentenceCorrection_examples.html

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

http://tagreorder.appspot.com/sentenceCorrection_examples.html

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites 32:15

0

10

20

30

40

50

60

70

20 30 40 50 60 70 80 90 100

G
LE
U

Sentence length

RNN Encoder‐Decoder
LanguageTools
SMT

Fig. 9. The performance of different methods dealing with sentences of different length (the number of
characters of the sentence)

the 8th example) that should not be formatted, or introduces some strange words (e.g., the 9th
example). In general, the phrase-based SMT does not work very well for minor scale of changes
involved in post edits. Therefore, it often has worse GLEU than the LanguageTool.

5.4.2 In which cases does our model recommend low-quality sentence edits?
By analyzing low-quality recommendations by our tool, we find four main cases in which our
model does not perform well.
First, some sentences are edited to add more information which is beyond the context of a

sentence, such as editing “I am currently working on a large project that heavily uses smart pointers with reference counting.”
to “I am currently working on a large project in C++ that heavily uses smart pointers with reference counting.”. Our current model
considers only the local context of a sentence. To support such complicated edits, the broader
context of the sentence (i.e., previous and subsequent sentences) need to be considered in the future.
Second, sometimes the context captured by our model may not be long enough. For example,

the original sentence “My db engine is MySQL I have two table 1.” should be edited to “My DB engine is MySQL I have

two table 1.”. But our method recommends not only capitalizing “db” to “DB”, but also changing “table”
to “tables”. However, the LanguageTool will not make such a mistake because there are no rules
inside it to change singular form to plural form.

Third, different users may have different opinions regarding what should or should not be edited.
For example, some users will edit the sentence “Would you recommend Java/J2EE, .Net / Erlang ?” to “Would you

recommend Java/J2EE, .NET or Erlang?” by changing “/” to “or”. However, many other users will not do that.
Many revert-back edits we see when collecting original-edited sentences are the evidence of such
different opinions. Different editing opinions often result in non-obvious editing patterns, which
machine learning techniques cannot effectively encode.

Fourth, the sentence length is a crucial factor influencing the performance of the RNN model. As
shown in Figure 9, with the increase of the sentence length, the GLEU of all three methods becomes
higher. This does not simply mean that these methods work better on longer sentences than shorter
sentence. Instead, this is because GLEU favors longer sentences as they would require more effort
to read and edit. For example, although the tool misses one edit for both sentences in Table 2, the
GLEU for the longer sentence is much higher than the shorter sentence. For all sentence lengths we
experiment, our model performs the best. But the performance difference between our model and
the baseline methods narrows as the sentence length increases. The fact that GLEU favors longer
sentences and the performance difference narrows actually indicates that the performance of our
RNN model decays as the sentence length increases. That is because the RNN model may “forget”
some prior information when processing towards the end of a long sentence. As such, it cannot
encode long-distance editing patterns very well which will lead to edit mistakes.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

32:16 Chunyang Chen, Zhenchang Xing, and Yang Liu

Fig. 10. Part of the results of post edits by our model

6 ASSISTING NOVICE POST EDITORS IN POST EDITING
Having established the confidence in the quality of sentence edits by our tool, we would like to
further investigate whether the recommended sentence edits by our tool can assist novice post
editors who have little experience in post editing and have little expertise in post content in
successfully completing post editing tasks.

To that end, we conduct a small-scale field study, in which the first author who has 400+ reputation
score in Stack Overflow acting as a novice post editor. We randomly select 50 posts from April 4 to
April 6, 2017 which is of reasonable size, and the human effort to manually collect the posts and
submit the post edits is manageable.. These 50 posts are not in our dataset of archival post edits. In
stack Overflow, each question can have up to 5 tags to describe its topics. The 50 selected posts
contain in total 123 tags (if the post is the answer, we take tags from its corresponding question)
and 105 of these tags are unique. This indicates that the 50 selected posts cover a diverse set of
programming topics. In fact, these posts contain many technical terms that are beyond the expertise
of the first author.

In Stack Overflow, novice post editors have to submit their post edits for peer review. According
to the Stack Overflow policy13, to guarantee the quality of post edits, a post edit will be accepted
only if at least three trusted contributors approve the edit otherwise it will be rejected. The first
author uses our model to generate sentence editing recommendations for the selected 50 posts,
based on which he edits the posts and submit the post edits to the community for approval. Our
field study lasts for three days because each user in Stack Overflow can submit at most 5 post edits
at the same time. We cannot submit more post edits until some submitted post edits are accepted
or rejected.
Among the 50 selected posts, our model finds that 39 posts need at least one sentence edit and

suggests the needed edits. For these 39 posts, there are on average 3.9 sentences edited and 5.6
edits per post (one sentence may receive several edits). Among the 39 submitted post edits, 36
(92.3%) are accepted and 3 (7.7%) are rejected. Records of some accepted and rejected edits14 are
shown in Figure 10. 3 rejected post edits contain 1, 2, 4 sentence edits respectively. For example,
one post edit involves only adding a question mark to the title, and it got three reject votes. The
other two rejected post edits actually got two approval votes but one reject vote. Although our
tool recommends the correct sentence edit, the post edit is rejected because it is regarded as too
minor which does not significantly improve the post quality15. In other words, for the 36 accepted
post edits, at least trusted contributors believe that they contain sufficient edits that significantly
improve the post quality, and thus approve them.

7 FEEDBACKS OF TRUSTED POST EDITORS
Finally, we conduct a survey of trusted post editors to understand three questions: 1) the trusted
post editors’ attention to small sentence edits. This will help us understand the need for an edit

13https://meta.stackexchange.com/questions/76284
14We cannot release the full results now as they will expose our identity which violates the double-blind polity.
15Predicting whether a post edit contains significant enough sentence edits is out of scope of this work.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites 32:17

assistance tool. 2) The trusted post editors’ opinions on the potential usefulness of our tool. 3) The
trusted post editors’ suggestions for our tool, which may inspire future enhancement of our tool.

We design a survey with three 5-points likert scale questions and 1 free-text question. The likert
scale questions are: 1) Howmuch do yo care about spelling, grammar, formatting edits? (1 being very
little and 5 being very much); 2) What percentage of your edits are spelling, grammar, formatting
edits? (1 being very low and 5 being very high); 3) How much could our tool help with such edits?
(1 being very little and 5 being very much). The first and third questions are accompanied with
the examples in Table 1 and Table 4 for illustration purpose. The free-text question asks for “any
suggestions or opinions for our tool and this research”.
To find survey participants, we sort all Stack Overflow users by the number of post edits they

have made in descending order. We read the profiles of the top 2000 ranked users and find the email
contacts for 410 users. Each of these 410 users has at least 800 post edits to their own or others’
posts. We send these 410 users an email introducing the background and goal of our work and
providing access to the survey. Among these 410 users, we collect 61 valid survey replies16.

Figure 11 summarizes the results of the three likert scale questions. 55 of 61 survey respondents
care much or very much about spelling, grammar, formatting edits. 30 respondents report that high
or very high percentage of their edits is spelling, grammar, formatting edits. These results confirm
the trusted post editors’ attention to small sentence edits. 34 respondents consider that our tool
would be helpful or very helpful for assisting small sentence edits.

34 of 61 respondents provides their opinions or suggestions for the free-text question. Those
considering our tool helpful comment that “having a natural language and correct grammar is important as all accepted

answers will be archived for reference in future”, “SO needs this tool and I hope to see it in action soon. I believe the resulting tool might be

useful outside the context of SO websites”, and “Very good idea, that would deserve to be integrated into StackOverflow as an assistance

tool”. Some mention “make your tool free software (open source)”.
However, even strong supporters have concerns like “How will it get integrated with the SO site?”. Similar

concerns are mentioned by those holding neural opinion “I believe a tool like that would only be pretty useful if it

somehow did what it did without at all getting in the way”, and those considering our tool not helpful “dubious if you
can create an interface that is sometimes useful and doesn’t get in the way when it isn’t”. We will elaborate our future plan
to integrate our tool in Stack Overflow in Section 8.1.
Some respondents consider our tool not helpful because they do not like spell checking tools

at all “Not interested. Same reason I abhor spell and grammar checkers. Generally way too many false positives”. Others prefer
to use existing tools “I use a browser plugin (Pentadactyl) to do the edits in an external editor (Vim), ... Any browser-based tool

therefore would be of little value to me.”. It would be interesting to see if these respondents would appreciate
the uniqueness and quality of our tool if they had actually use the tool.
Finally, both consider-helpful and consider-not-helpful respondents suggest that we should

consider assisting code formatting “Another useful thing would be to detect when some code isn’t indented enough”, “Most

of my edits are fixing indentation and formatting to make the code more readable”, “I don’t care about English formatting. Code formatting

is very important for me”. We believe they point out an interesting future direction.

8 DISCUSSION
8.1 Impact on Social Process andQuality Control
Our edit assistance tool can be integrated as a plugin of post editor or viewer to assist post editing
or viewing. In fact, one survey replier suggests that “Maybe it would automatically highlight things in text areas on

SO, or maybe it’d even optionally highlight things in posts even before I entered the edit interface, to prompt me that there are things in

that post I could fix”. In this way, our tool works in a similar way to existing spell checkers. It focuses on

16Available at http://tagreorder.appspot.com/surveyResults.html

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

http://tagreorder.appspot.com/surveyResults.html

32:18 Chunyang Chen, Zhenchang Xing, and Yang Liu

0

5

10

15

20

25

30

35

Q1 Q2 Q3

U
se
r n

um
be

r

Question ID

1 2 3 4 5

Fig. 11. The survey results

handling information without incorporating notions of role, process and social interaction [15].
However, our tool may still indirectly impact social process and quality control.
First, if the suggested highlighting feature is supported, it may impact to which posts human

editors allocate their attention. Furthermore, the editing knowledge of our tool comes from archival
post edits that human make. However, editing new terms emerging as technologies evolve still
needs human editors. Our tool may also impact to what information (the editing needs that the
tool can assist or the emerging editing needs) human editors allocate their attention. In any cases,
our edit assistance tool will never replace human editors, but assist the allocation of their attention.

Second, post editors can use our tool to improve the post quality, but conflicts may still occur when
collaborative editing changes the post meaning17. This may discourage other users’ subsequent
contributions. However, the risk of adopting our tool in discouraging users’ contributions would be
low. Our assistance tool corrects minor textual issues which would rarely change the post meaning
and the recommended edits is generally of high quality. Furthermore, our tool only recommends
sentence edits, while the editors decide whether to adopt the recommended edits or not. The
double checking by the editors mitigates the potential effects of altering the meaning of the original
posts. And Li et al [21] show that collaborative edits by human editors decrease the subsequent
contributions marginally.
Third, novice post editors can use our tool to learn to correct minor textual issues in others’

posts. Such small editing tasks can provide a mechanism of legitimate peripheral participation [19]
for novice users. However, the increasing post edits by novice editors may impact the edit review
process in Stack Overflow. On the one hand, as our field study shows, novice post editors can edit
many posts in a short time with the tool’s assistance. This will increase the approval working
load of trusted contributors. On the other hand, novice editors may accept some erroneous edit
recommendations made by the tool due to the lack of experience and knowledge. It may result in
some low-quality post edits. The existing Stack Overflow policy prevents such a situation from
happening because one novice contributor can submit at most 5 post edits for approval at the same
time and they cannot continue until some submitted edits have been approved. Suitable policies
and machine learning methods like Wikipedia’s OREs [1] may be further explored to avoid such
unintended consequences in the future.

8.2 Generalizability of Our Approach and Findings
In this work, we study only Stack Overflow post edits. However, our approach is not tied to any
collaborative editing or quality control process in online communities. The input to our approach
is essentially just a parallel corpus of original and edited text (see Figure 5). Therefore, we would
expect that the work flow of our approach can be applied to other online communities, such as
17https://meta.stackexchange.com/questions/28005

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites 32:19

other Stack Exchange sites, Wikipedia [3, 17], Quora18 where sufficient content editing history is
archived, to develop edit assistance tool.
Adopting our approach to other online communities needs to consider the content and editing

characteristics of those communities. For other Q&A sites about computer programming like
CodeProject19, the model trained by Stack Overflow data could be directly adopted. It would also
be straightforward to apply our approach to other Stack Exchange sites as all Stack Exchange sites
follow the same general community practices. However, for non-computing related Q&A sites like
mathematics, physics or chemistry, domain-specific regular expressions need to be developed to
normalize domain-specific rare words. For online communities like Wikipedia or Quora whose
content and editing practices are substantially different from Stack Overflow, a formative study of
the content and editing practices would be necessary to determine how to collect training data and
choose an appropriate deep learning method.

The other critical issue that affects the applicability of our approach is the availability of sufficient
archival editing data for training the deep learning model. By sufficient, the editing data is not
necessarily as large scale as Stack Overflow data in this study. For online communities like Stack
Overflow, Wikipedia, or Quora where the content and editing patterns are very diverse, a large
scale editing data is required and also available. For other sites that have much less editing data,
it may still be possible to train a reliable model because the content would be more focused and
the editing patterns would be less diverse. Future comparative studies are required to confirm the
extent to which the training data size affects our approach.
Another issue is whether the findings of our approach’s effectiveness and usefulness through

the evaluation of archival post edits, a small field study and the survey of trusted post editors will
still be valid in a large-scale, live deployment of the tool in Stack Overflow. We are confident in the
quality of recommended sentenced edits, but how to integrate our tool in Stack Overflow, whether
the recommended edits will be accepted in practice and how they may impact post owners and
editors’ behavior and the edit-review process require many further studies.

9 CONCLUSION AND FUTUREWORK
In this paper, we investigate the need for and the feasibility of assisting small sentence editing
in Stack Overflow. Our empirical observation of post edits in Stack Overflow and the survey of
trusted contributors confirms the need for an edit assistance tool and the potential benefits for
the community. A deep learning based approach has been developed to learn to apply sentence
editing patterns from large-scale post edits by the community. Our evaluation through large-scale
archival post edits demonstrates the quality of recommended sentence edits by our tool. Our field
study with a novice post editor demonstrates the tool’s ability to assist novice editor to edit posts
with a wide range of topics. Our survey of trusted contributors shows that trusted contributors
appreciate the tool’s potentials in assisting post editing, but they also raise the concerns about
how to integrate the tool in Stack Overflow and how to extend the tool for complex edits such as
adding/removing sentences or code formatting.
Although our tool, as a single-user application, can potentially assist post owners and editors

in improving content quality or assist novice editors in learning community-adopted editing
patterns, deploying our tool in Stack Overflow may have complicated impacts on social process
and collaboration, which deserve further studies in the future. We will also extend our approach
to other online communities to understand the generalizability of our approach, especially its
reliance on big data. Extending deep learning approach to code formatting could also benefit the

18https://www.quora.com/What-are-some-guidelines-and-policies-for-editing-a-question-on-Quora
19https://www.codeproject.com/script/Answers/List.aspx

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

32:20 Chunyang Chen, Zhenchang Xing, and Yang Liu

Stack Overflow community, as existing code formatting tools are all based on manually developed
rules for a particular language. Adding/removing whole sentences is still an open challenge for the
RNN-based model, but it could be feasible to train a classifier to decide what kinds of information
(e.g., code, screenshots, web resources) need to be added or removed in a post.

10 ACKNOWLEDGEMENT
We thank the anonymous reviewers for their valuable reviews which help reshape this paper. We
also thank Shamil Chollampatt in NUS for the evaluation metric suggestions of the sentence edits.
The GPU used in this work to speed up the experiment is supported by NVIDIA AI Technology
Center, Singapore.

REFERENCES
[1] 2017. The Objective Revision Evaluation Service. https://ores.wikimedia.org/. (2017).
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis,

Jeffrey Dean, Matthieu Devin, et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[3] Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic, Hamid Reza Motahari-Nezhad, Elisa Bertino,
and Schahram Dustdar. 2013. Quality control in crowdsourcing systems: Issues and directions. IEEE Internet Computing
17, 2 (2013), 76–81.

[4] Guntis Barzdins, Steve Renals, and Didzis Gosko. 2016. Character-Level Neural Translation for Multilingual Media
Monitoring in the SUMMA Project. arXiv preprint arXiv:1604.01221 (2016).

[5] Lasse Bergroth, Harri Hakonen, and Timo Raita. 2000. A survey of longest common subsequence algorithms. In String
Processing and Information Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Symposium on. IEEE, 39–48.

[6] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C Lai. 1992. Class-based n-gram
models of natural language. Computational linguistics 18, 4 (1992), 467–479.

[7] Chunyang Chen and Zhenchang Xing. 2016. Mining technology landscape from stack overflow. In Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. ACM, 14.

[8] Chunyang Chen and Zhenchang Xing. 2016. Towards correlating search on google and asking on stack overflow. In
Computer Software and Applications Conference (COMPSAC), 2016 IEEE 40th Annual, Vol. 1. IEEE, 83–92.

[9] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[10] Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou Ng. 2016. Neural Network Translation Models for Grammatical
Error Correction. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016. 2768–2774.

[11] Robert Dale, Ilya Anisimoff, and George Narroway. 2012. HOO 2012: A report on the preposition and determiner
error correction shared task. In Proceedings of the Seventh Workshop on Building Educational Applications Using NLP.
Association for Computational Linguistics, 54–62.

[12] Robert Dale and Adam Kilgarriff. 2011. Helping our own: The HOO 2011 pilot shared task. In Proceedings of the 13th
European Workshop on Natural Language Generation. Association for Computational Linguistics, 242–249.

[13] Mariano Felice. 2016. Artificial error generation for translation-based grammatical error correction. Technical Report.
University of Cambridge, Computer Laboratory.

[14] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech recognition with deep recurrent neural
networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international conference on. IEEE, 6645–6649.

[15] Jonathan Grudin. 1994. Groupware and social dynamics: Eight challenges for developers. Commun. ACM 37, 1 (1994),
92–105.

[16] Marcin Junczys-Dowmunt and Roman Grundkiewicz. 2016. Phrase-based Machine Translation is State-of-the-Art for
Automatic Grammatical Error Correction. arXiv preprint arXiv:1605.06353 (2016).

[17] Aniket Kittur and Robert E Kraut. 2008. Harnessing the wisdom of crowds in wikipedia: quality through coordination.
In Proceedings of the 2008 ACM conference on Computer supported cooperative work. ACM, 37–46.

[18] Philipp Koehn. 2009. Statistical machine translation. Cambridge University Press.
[19] Jean Lave and Etienne Wenger. 1999. Legitimate peripheral participation. Learners, learning and assessment, London:

The Open University (1999), 83–89.
[20] Guo Li, Tun Lu, Xianghua Ding, and Ning Gu. 2016. Predicting Collaborative Edits of Questions and Answers in

Online Q&A Sites. çűšéŽŻçűšèůŕæŁĂèąŞåŋÿåĹŁ 17, 6 (2016), 1187–1194.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

https://ores.wikimedia.org/

By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites 32:21

[21] Guo Li, Haiyi Zhu, Tun Lu, Xianghua Ding, and Ning Gu. 2015. Is It Good to Be Like Wikipedia?: Exploring the
Trade-offs of Introducing Collaborative Editing Model to Q&A Sites. In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing. ACM, 1080–1091.

[22] Zhuoran Liu and Yang Liu. 2016. Exploiting Unlabeled Data for Neural Grammatical Error Detection. arXiv preprint
arXiv:1611.08987 (2016).

[23] Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech Zaremba. 2015. Addressing the Rare Word
Problem in Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers. 11–19.

[24] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hartmann. 2011. Design lessons from the
fastest q&a site in the west. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM,
2857–2866.

[25] Piotr Mirowski and Andreas Vlachos. 2015. Dependency recurrent neural language models for sentence completion.
arXiv preprint arXiv:1507.01193 (2015).

[26] Tomoya Mizumoto and Yuji Matsumoto. 2016. Discriminative reranking for grammatical error correction with
statistical machine translation. In Proceedings of NAACL-HLT. 1133–1138.

[27] Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. 2015. Ground truth for grammatical error
correction metrics. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing, Vol. 2. 588–593.

[28] Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. 2016. GLEU Without Tuning. arXiv preprint
arXiv:1605.02592 (2016).

[29] Courtney Napoles, Keisuke Sakaguchi, and Joel Tetreault. 2016. There’s No Comparison: Reference-less Evaluation
Metrics in Grammatical Error Correction. arXiv preprint arXiv:1610.02124 (2016).

[30] Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy Susanto, and Christopher Bryant.
2014. The CoNLL-2014 Shared Task on Grammatical Error Correction.. In CoNLL Shared Task. 1–14.

[31] Daniel Ortiz-Martınez, Ismael Garcıa-Varea, and Francisco Casacuberta. 2005. Thot: a toolkit to train phrase-based
statistical translation models. Tenth Machine Translation Summit. AAMT, Phuket, Thailand, September (2005).

[32] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic evaluation of
machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics. Association
for Computational Linguistics, 311–318.

[33] Keisuke Sakaguchi, Courtney Napoles, Matt Post, and Joel Tetreault. 2016. Reassessing the goals of grammatical error
correction: Fluency instead of grammaticality. Transactions of the Association for Computational Linguistics 4 (2016),
169–182.

[34] Allen Schmaltz, Yoon Kim, Alexander M Rush, and Stuart M Shieber. 2016. Sentence-level grammatical error identifica-
tion as sequence-to-sequence correction. arXiv preprint arXiv:1604.04677 (2016).

[35] Andrew W Vargo and Shigeo Matsubara. 2016. Editing Unfit Questions in Q&A. In Advanced Applied Informatics
(IIAI-AAI), 2016 5th IIAI International Congress on. IEEE, 107–112.

[36] Fernanda B Viegas, Martin Wattenberg, and Jonathan Feinberg. 2009. Participatory visualization with wordle. IEEE
transactions on visualization and computer graphics 15, 6 (2009).

[37] Paul J Werbos. 1990. Backpropagation through time: what it does and how to do it. Proc. IEEE 78, 10 (1990), 1550–1560.
[38] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,

Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation. arXiv preprint arXiv:1609.08144 (2016).

[39] Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y Ng. 2016. Neural language correction with
character-based attention. arXiv preprint arXiv:1603.09727 (2016).

[40] Zheng Yuan and Ted Briscoe. 2016. Grammatical error correction using neural machine translation. In Proceedings of
NAACL-HLT. 380–386.

[41] Zheng Yuan, Ted Briscoe, and Mariano Felice. 2016. Candidate re-ranking for SMT-based grammatical error correction.
In Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications. 256–266.

[42] Ying Zhang, Stephan Vogel, and Alex Waibel. 2004. Interpreting bleu/nist scores: How much improvement do we need
to have a better system?. In LREC.

Received June 2017; Revised August 2017; Accepted November 2017

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 2, Article 32. Publication date: November 2017.

	Abstract
	1 Introduction
	2 RELATED WORK
	3 Formative Study of Post Editing in Stack Overflow
	3.1 What has been edited?
	3.2 Who edited posts?
	3.3 What are post edits about?
	3.4 What is the scale of changes that post edits involve?

	4 Assisting Sentence Editing
	4.1 Approach Overview
	4.2 Collecting the Corpus of Original-Edited Sentence Pairs
	4.3 Character-Level RNN Encoder-Decoder Model
	4.4 Normalizing Domain-Specific Rare Words
	4.5 Implementation

	5 The Quality of Recommended Sentence Edits
	5.1 Dataset
	5.2 Baseline Methods
	5.3 Evaluation metric
	5.4 Evaluation Results

	6 Assisting Novice Post Editors in Post Editing
	7 Feedbacks of Trusted Post Editors
	8 Discussion
	8.1 Impact on Social Process and Quality Control
	8.2 Generalizability of Our Approach and Findings

	9 Conclusion and Future Work
	10 Acknowledgement
	References

