
DiffTech: A Tool for Differencing Similar Technologies from
Question-and-Answer Discussions

Han Wang
freddie.wanah@gmail.com

Faculty of Information Technology, Monash University
Australia

Chunyang Chen
chunyang.chen@monash.edu

Faculty of Information Technology, Monash University
Australia

Zhenchang Xing
zhenchang.xing@anu.edu.au

College of Engineering & Computer Science, Australian
National University

Australia

John Grundy
john.grundy@monash.edu

Faculty of Information Technology, Monash University
Australia

ABSTRACT

Developers can use different technologies for different software
development tasks in their work. However, when faced with several
technologies with comparable functionalities, it can be challeng-
ing for developers to select the most appropriate one, as trial and
error comparisons among such technologies are time-consuming.
Instead, developers resort to expert articles, read official documents
or ask questions in Q&A sites for technology comparison. However,
it is still very opportunistic whether they will get a comprehensive
comparison, as online information is often fragmented, contradic-
tory and biased. To overcome these limitations, we propose the
DiffTech system that exploits the crowd sourced discussions from
Stack Overflow, and assists technology comparison with an infor-
mative summary of different comparison aspects. We found 19,118
comparative sentences from 2,410 pairs of comparable technolo-
gies. We released our DiffTech website for public use. Our website
attracts over 1800 users and we also receive some positive com-
ments on social media. A walkthrough video of the tool demo:
https://www.youtube.com/watch?v=ixX41DXRNsI
Website link: https://difftech.herokuapp.com/

CCS CONCEPTS

• Software and its engineering;

KEYWORDS

differencing similar technology, Stack Overflow, NLP

ACM Reference Format:

Han Wang, Chunyang Chen, Zhenchang Xing, and John Grundy. 2020.
DiffTech: A Tool for Differencing Similar Technologies from Question-and-
Answer Discussions. In Proceedings of the 28th ACM Joint European Software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3417931

Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3368089.3417931

1 INTRODUCTION

A diverse set of technologies (e.g, algorithms, programming lan-
guages, platforms, libraries/frameworks, concepts for software en-
gineering) [9, 12] is available for use by developers and that set con-
tinues growing. Adopting suitable technologies will significantly
accelerate the software development process and also enhance the
software quality. However, when developers are looking for the
right technologies for their tasks, they are likely to find several
candidates. For example, they will find bubble sort and quick sort
algorithms for sorting, nltk and opennlp libraries for NLP, Eclipse
and Intellij for developing Java applications.

Faced with so many compatible candidates, even for experienced
developers, it can be difficult to keep pace with the rapid evolu-
tion of technologies. We find that the perceptions of developers
about comparable technologies and the choices they make which
technology to use are very likely to be influenced by how other
developers see and evaluate the technologies. So developers often
turn to the two information sources on the Web [4] to learn more
about comparable technologies.

They may read experts’ articles about technology comparison
like “Intellij vs. Eclipse: Why IDEA is Better” . And search on Q&A
websites such as Stack Overflow or Quora (e.g., “Apache OpenNLP
vs NLTK”). However, there are two limitations with expert articles
and community answers, which are Fragment view (each post can
only focuses on one specific aspect, which leads developers to
search everywhere) and Diverse opinions (developers have different
opinions on the same technology). The above two limitations create
a high barrier for developers to effectively gather useful information
about technology differences on the Web.

Different methods have been adopted to mine similar artefacts
ranging from high-level software [27], mobile applications [17, 25],
github projects [20, 31] to low-level third-party libraries [8, 10],
APIs [6, 14, 22, 28], or Q&A questions [7, 13, 16]. However, most
of them only focus on specific domain, while we are developing
a systematical way to not only extract different software-specific
artefacts like general software concepts (e.g., algorithm, protocol),
tools (e.g., IDE) but also the user opinions to them.

https://www.youtube.com/watch?v=ixX41DXRNsI
https://difftech.herokuapp.com/
https://doi.org/10.1145/3368089.3417931
https://doi.org/10.1145/3368089.3417931
https://dzone.com/articles/why-idea-better-eclipse
https://stackoverflow.com/questions/47011991/apache-open-nlp-vs-nltk
https://stackoverflow.com/questions/47011991/apache-open-nlp-vs-nltk

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Han Wang, Chunyang Chen, Zhenchang Xing, and John Grundy

Figure 1: A comparative sentence in a question (#30654296)

that is not explicitly for technology comparison.

Data Dump
Posts

Locating comparative
sentences

Measuring sentence
similarity

Clustering and extract
aspects of sentences

Training and extracting
predicted sentiment

Comparable
opinions of

technologies

Building Comparative-
technology knowledge base

Tags &
TagWiki

Figure 2: The overview of our approach

Our work is motivated by the fact that a wide range of technolo-
gies have been discussed by millions of users in Stack Overflow, and
users often express their preferences toward a technology and com-
pare one technology with the others in the discussions. Apart from
posts that are explicitly about the comparison of some technolo-
gies, many comparative sentences hide in posts that are implicitly
about technology comparison. Figure.1 shows such an example:
the answer “accidentally” compares Innodb and Myisam, while the
question does not explicitly ask for this comparison. Inspired by
such phenomenon, we then propose our system to mine and ag-
gregate the comparative sentences in Stack Overflow discussions.
We collect a large number of comparable technologies and corre-
sponding comparative information from Stack Overflow. We then
build a website called DiffTech1 and make it public to real-world
developers.

2 APPROACH

We consider Stack Overflow tags as a collection of technology
terms and first build comparable technology knowledge base by
analyzing tag embeddings and categories, as shown in Figure. 2. Our
system then mines comparative opinions from Q&A discussions by
analyzing sentence patterns, calculating word mover distance [24]
and community detection [21] to cluster comparative sentences. We
then fine-tune the BERT [19] model to summarize overall sentiment
from all the comparative sentences for each comparable technology
pairs. Finally, we built a developer-oriented information website
using the data we collected and analysed.

2.1 Mining Similar Technology

Studies [5, 8, 29] show that Stack Overflow tags identify computer
programming technologies that questions and answers revolve

1https://difftech.herokuapp.com/

around. They cover a wide range of technologies, from algorithms
(e.g., dijkstra, rsa), programming languages (e.g., golang, javascript),
libraries and frameworks (e.g., gson, flask), and development tools
(e.g., sublime, vmware). In this work, we regard Stack Overflow
tags as a collection of technologies that developers would like to
compare.

1) Learning Tag Embeddings: Word embeddings [26] are dense
low-dimensional vector representations of words that are built on
the assumption that words with similar meanings tend to be present
in a similar context. In our approach, given a corpus of tag sentences,
we use word embedding methods to learn the word representation
of each tag using the surrounding context of the tag in the corpus of
tag sentences. We use the continuous bag-of-words (CBOW) model
as the word embedding methods and collect a corpus of tags and
their corresponding vectors.

2) Mining Categorical Knowledge: To determine the category of a
tag, we resort to the tag definition in the TagWiki of the tag. We
find out that normally, the first noun just after the be verb defines
the category of the tag. For example, Matplotlib is a plotting library
for Python. Based on the pattern, we extract the first sentence of the
TagWiki description, and then apply Part of Speech (POS) tagging to
the extracted sentence. With this method, we obtain 318 categories
for the 23,658 tags (about 67% of all the tags that have a TagWiki).
We manually normalize and categorized these 318 categories into
five general categories: programming language, platform, library,
API, and concept/standard [30].

3) Building Similar-technology Knowledge Base: We’ve had the
vectors of each tag and their categories after the two steps above.
For a technology tag t1, and another technology tag t2, if their cosine
similarity is less than a threshold, and they are identified as same
the category, then we consider them as comparable technology
pairs.

2.2 Mining Comparative Opinions

For each pair of comparable technologies in the knowledge base, we
analyze the Q&A discussions in Stack Overflow to extract plausible
comparative sentences by which Stack Overflow users express their
opinions on the comparable technologies.

1) Locate Comparative Sentences: Similar to how we mine Cate-
gorical Knowledge, we also use the POS tagging when locating the
comparative sentences. We divide the sentences into two categories:
single sentences and contextual sentences. Then, we extend the list of
common POS tags to enhance the identification of comparative sen-
tences. More specifically, we create four comparative POS tags: CV
(comparative verbs, e.g. prefer, compare, beat), CIN (comparative
prepositions, e.g. than, over), NW (negation words, e.g. wouldn’t,
doesn’t), and TECH (technology reference, including the name and
aliases of a technology, e.g. python, eclipse). We use a large the-
saurus of morphological forms of software-specific terms [15, 18]
to replace the abbreviation, synonym and misspelling technologies.
We summarize 4 patterns for single sentences and 3 patterns for
contextual sentences. If the POS tags of a single sentence match
the patterns, we identify it as a single sentences type comparative
opinion. If the POS tags of two or three sequential sentences match
the patterns, we identify them as a contextual sentences type com-
parative opinion. Table 1 and Table 2 show the patterns we use to

https://difftech.herokuapp.com/

DiffTech: A Tool for Differencing Similar Technologies fromQuestion-and-Answer Discussions ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Patterns of comparative single sentences

No. Pattern Sequence example Original sentence

1 TECH * VBZ * (JJR ∨ RBR) innodb has 30% higher InnoDB has 30% higher performance than MyISAM on average.
ubuntu is better i believe that ubuntu is better than centos.

2 ((RBR JJ) ∨ JJR) * CIN * TECH faster than coalesce Isnull is faster than coalesce.
more complex than mysql Triggers in postgresql have a syntax a bit more complex than mysql.

3 CV * CIN TECH recommend scylla over cassandra I would recommend scylla over cassandra.
4 CV VBG TECH recommend using html5lib I strongly recommend using html5lib instead of beautifulsoup.

Table 2: Patterns of comparative contextual sentences

No. Pattern Sequence example Original sentence

1 TECH * VBZ * (JJR ∨ RBR) triple des is generally better Triple des is generally better but there are some known theoretical attacks.
If you have a choice of cipher you might want to look at aes instead.

2 ((RBR JJ) ∨ JJR) * CIN * TECH faster than MySQL Postgres has a richer set of abilities and a better optimizer.
Its ability to do hash joins often makes it much faster than MySQL for joins.

3 AFF | NEG cassini does not Cassini does not support https.
iis to do However you can use iis to do this.

locate the comparative sentences and some sample sentences. Note
that the AFF and NEG refer to the affirmation and negation sen-
tences. In this pattern the two sentences need to be one affirmation
sentence and one negation sentence, and each of them need to talk
about one technology that are comparable.

2)Measuring Sentence Similarity: Tomeasure the similarity of two
comparative sentences, we adopt the Word Mover’s Distance [24]
which is especially useful for short-text comparison. We first train
a word embedding model based on the post content of Stack Over-
flow so that we get a dense vector representation for each word in
Stack Overflow. Then, we compute the minimal word movers’ dis-
tance between the keywords in one sentence and those in the other
sentences. Base on the distance, we further compute the similarity
score of the two sentences by 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 (𝑆1, 𝑆2) = 1

1+𝐷 (𝑆1,𝑆2) .
3) Clustering Representative Comparison Aspects: Based on com-

parative sentences and their similarities, we take each sentence as
one node in the graph. If two sentences are determined as similar
enough (similar score > 0.55), we add an edge between them in the
graph. We cluster similar opinions by applying a community detec-
tion algorithm [21] to the graph of comparative sentences. Within
each cluster, we take the top-3 words with largest TF-IDF (Term Fre-
quency Inverse Document Frequency) scores as the representative
aspect for the community.

2.3 Summarizing Overall Opinion

There may be too many comparison opinions that are too time-
consuming for developers to read. So we further develop a senti-
ment classifier based on the BERT model [19] for automatically
distilling the overall opinion towards the comparable technologies.
That summarization can be an important criteria for developers to
determine which technology to adopt.

2.4 Tool Implementation

We take the Stack Overflow data dump (released on 4 September
2019) as the data source. It contains 18,154,493 questions with 55,665
unique tags, and 27,765,324 answers. We collect in total 14,876 pairs
of comparable technologies. Among these technologies, we extract

Opinion Summarization

Tagwiki Description

Comparative
Technologies

Clusters Keywords

Link to Original Post

Figure 3: The screenshot of our website DiffTech and some

important elements in the website

19,118 comparative sentences for 2,410 pairs of comparable tech-
nologies. We use these technology pairs and comparative sentences
to build a knowledge base for comparison.

Based on our proposed approach, we implemented a practical
website (https://difftech.herokuapp.com/) for developers. With the
knowledge base of comparable technologies and their compara-
tive sentences mined from Stack Overflow, our site can return an
informative and aggregated view of comparative sentences in dif-
ferent comparison aspects for comparable technology queries. In
addition, it provides a link for each comparative sentence to its
corresponding Stack Overflow post so that users can easily find
detailed content. Figure 3 shows a screenshot from our website.

For each comparable technology pair, we mine the first sentence
from the Tagwiki as the description. Below the descriptions, are
two charts. The left pie chart is the overall opinion we summarized
in Section 2.3. From the page, we can see about 56.4% of the users
support using Vim instead of Emacs. The right side is the trend
chart [11] shows that compared with Emacs, more people talks
about Vim. We can also see that the method has grouped all of
the comparative sentences into four clusters, shown in the top left

https://difftech.herokuapp.com/

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Han Wang, Chunyang Chen, Zhenchang Xing, and John Grundy

corner. For each clustered aspect, we list the comparative sentences
below and attach the direct link for each comparative sentence to
its original post. Users can click the link to get more content.

The website was initially created in September 2018 for our pre-
vious study [23]. We updated it October 2019 with new contributed
features. It is built with Django, and hosted on Heroku. We stored
all the comparative information which we collect in the above steps
in the Postgresql Database also on Heroku.

3 TOOL STUDY

The accuracy of our approach has been demonstrated in our previ-
ous work [23]. Here we demonstrate the usefulness of our tool by
analyzing the usage scenarios and visitation log.

3.1 Usage Scenarios

According to our observation of users’ visiting log, we catego-
rize them into two groups: Developers and Programming Learn-
ers/Students. We discuss use cases for the two parties separately.

1) Developers: For industry developers, it can be challenging
to choose the correct technology for their product. For example
whether to use ant or maven for Java project management. They
can visit our website and get to know which technology most users
recommend from the opinion pie chart. They can find out which is
more popular based on the trend chart. As they scroll down, they
have views of detailed comparisons based on different aspects, learn
under which scenarios the technology performs the best. If they
find certain sentences they are interested in, they can easily access
the detained Stack Overflow posts.

2) Programming Learners/Students: For this type of users, our
website is like a learning material beyond lecture notes. DiffTech
gives them an opportunity to compare similar technologies in dif-
ferent aspects, refer the seniors’ experience, and learn the new
technology quickly. For instance, if a student just learned TCP and
UDP protocols, and wanted to know more about the differences
in between. The comparative sentences from our site not just tell
the fact that UDP is normally faster than TCP, but also give the
reasons like UDP doesn’t need handshakes and it doesn’t require
the arrival sequence. Moreover, the comparisons are not just con-
ceptual, some of them also involved in practical part like under
which circumstance suits which protocol better, for example “Udp
is more suitable for streaming media;but if you are sensitive with your
music streaming tcp is more secure”. Another scenario would be a
programming learner try to pick a machine learning tool. From
DiffTech, he could know that “I recommend you check this page also
i think keras is better to begin with than tensorflow” and “Keras is a
higher level library that is much easier to learn than tensorflow and
you have more sample code online”.

3.2 Field Study

We embedded Google Analytics in our site to help with tracking
usage data. In addition to the general site traffic statistics, we further
investigate two questions regarding what users are interested in
and what they think of our website:

1) Traffic Statistics: Figure 4 shows the website traffic from 3rd
October 2019 to 13th Jun 2020. There are about 1811 users from 81
different countries visited our website. These users viewed 3,332

Figure 4: The traffic of our website from Google Analytics

pages and had an average session time over 1 minute. Note that
most users come to our site with very specific target, i.e., comparing
a pair of similar technologies, so, the average number of visited
pages in each session is rather small. Most users came from the U.S.
(43.58%), with other countries such as China (12.31%), Japan (4.87%),
etc. Nearly 5% of the users come back to visit our website again,
indicating the usefulness and attraction of our site.

2) Most viewed Comparisons: According to the analytics data, the
comparison between gson and jackson are viewed the most by users,
they have 547 views. Mysql and Postgresql are in the second place,
whereas lisp and scheme are in the third place. All of which are
viewed over 100 times in two months.

3) Users comments and suggestions:We posted links to the website
on some websites such as StackApps [1] and Reddit [2] [3] for
advertisement purpose and to collect user feedback. Apart from
the visiting, some users also post comments under our posts such
as “Thank you ...will share the word”, “It was actually better than
I expected, at least for the suggested comparisons. Good job!”. They
also provide some constructive suggestions for improving our tool
like “This sounds interesting. However I think it would be better if
there were options to add to the technologies, pros, cons and usage.”.
There are also some comments about the bug that the website has.
We are happy to see the compliment from users and will improve
based on the suggests.

4 CONCLUSION AND FUTUREWORK

In this demo we presented DiffTech, a system to distill and aggre-
gate opinions of comparable technologies from Q&A websites. We
first obtained a large pool of comparable technologies the word
embedding of tags in Stack Overflow. We then located compara-
tive sentences about these technologies by POS-tag based pattern
matching, organized comparative sentences into clusters, and fi-
nally summarized comparative sentences to obtain an aggregated
opinion for each comparable technologies.We used this to construct
a proof-of-concept tool of it for developers.

In spite of comparative sentences explicitly mentioning both
comparable technologies, some comparative opinionsmay be deeper.
For example, one developer expresses his opinions about one tech-
nology in one paragraph while discussing the other technology in
the next paragraph. Therefore, we will improve our system to distill
technology comparison knowledge from the current sentence level
to post level.

ACKNOWLEDGEMENTS

Prof. Grundy is supported byARCLaureate Fellowship FL190100035.

DiffTech: A Tool for Differencing Similar Technologies fromQuestion-and-Answer Discussions ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

REFERENCES

[1] 2019. DiffTech: Compare similar technologies based on StackOver-
flow data. https://stackapps.com/questions/8469/difftech-compare-similar-
technologies-based-on-stackoverflow-data. Accessed: 2019-11-18.

[2] 2019. Website for developers compare similar technologies(i.e. postgresql vs
mysql). https://www.reddit.com/r/programming/comments/drba2s/website_for_
developers_compare_similar/. Accessed: 2019-11-18.

[3] 2019. Website the could be helpful for programming learners.
https://www.reddit.com/r/learnprogramming/comments/dspnwc/website_the_
could_be_helpful_for_programming/. Accessed: 2019-11-18.

[4] Lingfeng Bao, Jing Li, Zhenchang Xing, Xinyu Wang, Xin Xia, and Bo Zhou. 2017.
Extracting and analyzing time-series HCI data from screen-captured task videos.
Empirical Software Engineering 22, 1 (2017), 134–174.

[5] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. 2014. What are devel-
opers talking about? an analysis of topics and trends in stack overflow. Empirical
Software Engineering 19, 3 (2014), 619–654.

[6] Chunyang Chen. 2020. SimilarAPI: Mining Analogical APIs for Library Migration.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
IEEE.

[7] Chunyang Chen, Xi Chen, Jiamou Sun, Zhenchang Xing, and Guoqiang Li. 2018.
Data-driven proactive policy assurance of post quality in community q&a sites.
Proceedings of the ACM on human-computer interaction 2, CSCW (2018), 1–22.

[8] Chunyang Chen, Sa Gao, and Zhenchang Xing. 2016. Mining analogical libraries
in q&a discussions–incorporating relational and categorical knowledge into word
embedding. In Software Analysis, Evolution, and Reengineering (SANER), 2016
IEEE 23rd International Conference on, Vol. 1. IEEE, 338–348.

[9] Chunyang Chen and Zhenchang Xing. 2016. Mining technology landscape from
stack overflow. In Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. ACM, 14.

[10] Chunyang Chen and Zhenchang Xing. 2016. Similartech: automatically recom-
mend analogical libraries across different programming languages. In Automated
Software Engineering (ASE), 2016 31st IEEE/ACM International Conference on. IEEE,
834–839.

[11] Chunyang Chen and Zhenchang Xing. 2016. Towards correlating search on
google and asking on stack overflow. In Computer Software and Applications
Conference (COMPSAC), 2016 IEEE 40th Annual, Vol. 1. IEEE, 83–92.

[12] Chunyang Chen, Zhenchang Xing, and Lei Han. 2016. Techland: Assisting
technology landscape inquiries with insights from stack overflow. In Software
Maintenance and Evolution (ICSME), 2016 IEEE International Conference on. IEEE,
356–366.

[13] Chunyang Chen, Zhenchang Xing, and Yang Liu. 2017. By the Community & For
the Community: A Deep Learning Approach to Assist Collaborative Editing in
Q&A Sites. Proceedings of the ACM on Human-Computer Interaction 1, 32 (2017),
1–32.

[14] Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Long Xiong Ong. 2019.
Mining likely analogical apis across third-party libraries via large-scale unsu-
pervised api semantics embedding. IEEE Transactions on Software Engineering
(2019).

[15] Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised
software-specific morphological forms inference from informal discussions. In
Proceedings of the 39th International Conference on Software Engineering. IEEE
Press, 450–461.

[16] Guibin Chen, Chunyang Chen, Zhenchang Xing, and Bowen Xu. 2016. Learning
a dual-language vector space for domain-specific cross-lingual question retrieval.
In Automated Software Engineering (ASE), 2016 31st IEEE/ACM International Con-
ference on. IEEE, 744–755.

[17] Ning Chen, Steven CH Hoi, Shaohua Li, and Xiaokui Xiao. 2015. SimApp: A
framework for detecting similar mobile applications by online kernel learning. In
Proceedings of the Eighth ACM International Conference on Web Search and Data
Mining. ACM, 305–314.

[18] Xiang Chen, Chunyang Chen, Dun Zhang, and Zhenchang Xing. 2019. SEthe-
saurus: WordNet in Software Engineering. IEEE Transactions on Software Engi-
neering (2019).

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

[20] Sa Gao, Chunyang Chen, Zhenchang Xing, Yukun Ma, Wen Song, and Shang-
Wei Lin. 2019. A neural model for method name generation from functional
description. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 414–421.

[21] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social and
biological networks. Proceedings of the national academy of sciences 99, 12 (2002),
7821–7826.

[22] XiaodongGu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM:
Migrate APIs with multi-modal sequence to sequence learning. arXiv preprint
arXiv:1704.07734 (2017).

[23] Yi Huang, Chunyang Chen, Zhenchang Xing, Tian Lin, and Yang Liu. 2018.
Tell them apart: distilling technology differences from crowd-scale comparison
discussions.. In ASE. 214–224.

[24] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. 2015. From word
embeddings to document distances. In International Conference on Machine Learn-
ing. 957–966.

[25] Mario Linares-Vásquez, Andrew Holtzhauer, and Denys Poshyvanyk. 2016. On
automatically detecting similar android apps. In Program Comprehension (ICPC),
2016 IEEE 24th International Conference on. IEEE, 1–10.

[26] Suyu Ma, Zhenchang Xing, Chunyang Chen, Cheng Chen, Lizhen Qu, and Guo-
qiang Li. 2019. Easy-to-Deploy API Extraction by Multi-Level Feature Embedding
and Transfer Learning. IEEE Transactions on Software Engineering (2019).

[27] Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. 2012. Detecting
similar software applications. In Proceedings of the 34th International Conference
on Software Engineering. IEEE Press, 364–374.

[28] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017. Exploring API embedding for API usages and applications. In Software
Engineering (ICSE), 2017 IEEE/ACM 39th International Conference on. IEEE, 438–
449.

[29] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How do
programmers ask and answer questions on the web?: Nier track. In Software
Engineering (ICSE), 2011 33rd International Conference on. IEEE, 804–807.

[30] Deheng Ye, Zhenchang Xing, Chee Yong Foo, Zi Qun Ang, Jing Li, and Nachiket
Kapre. 2016. Software-specific named entity recognition in software engineering
social content. In Software Analysis, Evolution, and Reengineering (SANER), 2016
IEEE 23rd International Conference on, Vol. 1. IEEE, 90–101.

[31] Yun Zhang, David Lo, Pavneet Singh Kochhar, Xin Xia, Quanlai Li, and Jianling
Sun. 2017. Detecting similar repositories on GitHub. In Software Analysis, Evolu-
tion and Reengineering (SANER), 2017 IEEE 24th International Conference on. IEEE,
13–23.

https://stackapps.com/questions/8469/difftech-compare-similar-technologies-based-on-stackoverflow-data
https://stackapps.com/questions/8469/difftech-compare-similar-technologies-based-on-stackoverflow-data
https://www.reddit.com/r/programming/comments/drba2s/website_for_developers_compare_similar/
https://www.reddit.com/r/programming/comments/drba2s/website_for_developers_compare_similar/
https://www.reddit.com/r/learnprogramming/comments/dspnwc/website_the_could_be_helpful_for_programming/
https://www.reddit.com/r/learnprogramming/comments/dspnwc/website_the_could_be_helpful_for_programming/

	Abstract
	1 Introduction
	2 Approach
	2.1 Mining Similar Technology
	2.2 Mining Comparative Opinions
	2.3 Summarizing Overall Opinion
	2.4 Tool Implementation

	3 Tool Study
	3.1 Usage Scenarios
	3.2 Field Study

	4 Conclusion and Future Work
	References

