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DiffTech: Differencing Similar Technologies from
Crowd-Scale Comparison Discussions

Han Wang, Chunyang Chen, Zhenchang Xing, and John Grundy

Abstract—Developers use different technologies for many software development tasks. However, when faced with several
technologies with comparable functionalities, it is not easy to select the most appropriate one, as trial and error comparisons among
such technologies are time-consuming. Instead, developers can resort to expert articles, read official documents or ask questions in
Q&A sites. However, it still remains difficult to get a comprehensive comparison as online information is often fragmented or
contradictory. To overcome these limitations, we propose the DIFFTECH system that exploits crowdsourced discussions from Stack
Overflow, and assists technology comparison with an informative summary of different aspects. We first build a large database of
comparable technologies in software engineering by mining tags in Stack Overflow. We then locate comparative sentences about
comparable technologies with natural language processing methods. We further mine prominent comparison aspects by clustering
similar comparative sentences and representing each cluster with its keywords and aggregate the overall opinion towards the
comparable technologies. Our evaluation demonstrates both the accuracy and usefulness of our model, and we have implemented our
approach as a practical website for public use.

Index Terms—comparing and differencing similar technology, Stack Overflow, natural language processing, NLP
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1 INTRODUCTION

A diverse set of technologies – algorithms, program-
ming languages, platforms, libraries/frameworks, concepts
for software engineering [1], [2] – is available for use
by developers, and this continues to grow significantly.
Adopting the most suitable technologies for a problem will
significantly accelerate software development and enhance
the software quality [3]. When developers are looking for
the right technology choices for their tasks, they are likely to
find several comparable candidates. For example, they will
find bubble sort and quick sort algorithms for sorting, nltk and
opennlp libraries for NLP, Eclipse and Intellij for developing
Java applications.

Faced with so many candidates, developers are expected
to have a good understanding of different technologies in
order to make a suitable choice for their work. However,
even for experienced developers, it can be challenging to
keep pace with the rapid evolution of different software
technologies. Developers can try each of the candidates in
their work to compare them. Such a trial-and-error based
assessment is time-consuming and labor extensive. Instead,
we find that the perceptions of developers about compa-
rable technologies and the choices they make about which
technology to use are very likely to be influenced by how
other developers see and evaluate the technologies. Thus,
developers often turn to two key information sources on
the Web [4] to learn more about comparable technologies.

First, they read experts’ articles about technology com-
parison, such as “Intellij vs. Eclipse: Why IDEA is Better”.
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Fig. 1. A comparative sentence in a question (#30654296) that is not
explicitly for technology comparison.

Second, developers seek answers on Q&A websites, such as
Stack Overflow or Quora (e.g., “Apache OpenNLP vs NLTK”).
These expert articles and community answers are indexed
by search engines, thus enabling developers to quickly find
answers to their technology comparison inquiries.

However, there are two major limitations with using
these expert articles and community answers.

• Fragmented view: An expert article or community answer
usually focuses on a specific aspect of some compara-
ble technologies, and developers have to aggregate the
fragmented information into a complete comparison from
different aspects. For example, to compare mysql and
postgresql, one article [5] contrasts their speed, while an-
other [6] compares their reliability. Only after reading both
articles, developers may then have a more comprehensive
overview of these two comparable technologies.

• Diverse opinions: Each expert article or community an-
swer is based on the author’s knowledge and experience.
However, the knowledge and experience of developers
vary greatly, and because they all work on vastly different
projects, their perspective on a technology may also differ.
For example, one may prefer Eclipse over Intellij because
Eclipse fits his project setting better. But that setting may
not be generalisable to other developers. At the same time,
some developers may prefer Intellij over Eclipse for other
reasons, including their own preferences and positive

https://dzone.com/articles/why-idea-better-eclipse
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or negative experiences. Such contradictory preferences
among different opinions may confuse developers.

Our DIFFTECH system is motivated by the fact that a
wide range of technologies has been discussed by millions
of users in Stack Overflow [7], and users often express their
preferences toward a technology and compare one technol-
ogy with the others in these discussions. Apart from posts
explicitly about the comparison of some technologies, many
comparative sentences hide in posts are implicitly about
technology comparisons. Fig.1 shows such an example: the
answer “accidentally” compares Innodb and Myisam. The
question “What is the correct way to enable query cache?”
does not explicitly ask for this comparison. Inspired by such
a phenomenon, we designed our DIFFTECH system to mine
and aggregate such technology comparative sentences from
Stack Overflow discussions.

As shown in Fig. 2, the input is a set of tags
{T1, T2, ...Tn} with their definitions in TagWiki, and
posts data from Stack Overflow data dump. We con-
sider Stack Overflow tags as a collection of technology
terms and first find sets of comparable technology pairs
(T1, T2), (T3, T4), . . . (Ti, Tj)... by analyzing tag embed-
dings and categories (1-3). DIFFTECH then mines compar-
ative opinions from Q&A discussions by checking sentence
patterns, clustering with word mover distance [8] and com-
munity detection [9]. Given a comparable technology pair
(Ti, Tj), we mine comparable sentences {S1, S2, ....Sm} that
are related to (Ti, Tj) (4, 5). Based on extracted sentences, we
further cluster them into a set of categories {C1, C2, . . . Cp}
(6). Finally, we fine-tune the BERT [10] model to summarize
overall sentiment of all comparative sentences for each com-
parable technology pairs (7). The outputs are comparable
opinions of technologies. As a result, our approach takes
a query Q, made up of a technology pair, Q = {T1, T2},
and maps Q onto a set of clustered comparable sentences,
i.e., f(Q) = {C1 : (S1, S2, ...), . . . Cp : (..., Si, Sj)}. There
are summative opinions for each category C. We also im-
plemented a practical website1 for developers to compare
similar technologies.

Our DIFFTECH is especially useful in some specific sce-
narios. First, when developers are trying to spend as little
time as possible to figure out which technology is better.
Since our DIFFTECH provides the overall preference from
the crowd, developers can easily make the decision by re-
viewing our aggregated results. Second, when some novice
developers or students are trying to learn the similarity and
difference between similar technologies, our DIFFTECH is a
good platform for their initial reference. But our tool may
not be suitable for developers who are seeking for rigid
comparison of similar technologies such as the performance
of third-party libraries in their specific development context.
Developers have to run formal performance experiments
in their specific environment, though our DIFFTECH may
provide them with initial inspiration.

As there is no ground truth for technology comparison,
we manually validate the performance of each step of our
approach. Our experimental results confirm the accuracy
of comparable technology identification (90.7%), and distill-
ing comparative sentences (88.8%) from Q&A discussions.

1. https://difftech.herokuapp.com/
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Fig. 2. Overview of our approach

By manually building our ground truth, we show that
our clustering method (word mover distance and com-
munity detection) for comparative sentences significantly
outperforms other baselines. Regarding the accuracy of
overall sentiment summarization, our model also provides
13.6% improvement over the baselines. We also demonstrate
the generality of our approach by successfully extracting
comparative opinions of comparable technologies in other
domain-specific datasets.

This paper is an extension of our prior study [11], with
the following additional contributions:
• We extend the single sentence patterns to take context

and coreference into consideration to discover more
comparative sentences about similar technologies. We
also add the contextual sentences patterns to extract
more sentences.

• To give developers a clearer overview, we develop a
classifier for identifying the sentiment towards each
technology, and aggregate crowd opinions in total.

• We have extended our previous experiments by includ-
ing new data and new baselines, and carried out more
detailed analysis of experimental results.

• We demonstrated the generality of our method by ap-
plying it to other domain-specific datasets, and demon-
strated the usefulness of DiffTech via a user study.

• Based on the extracted comparative opinions, we have
implemented a practical website for developers looking
for technology comparison knowledge. An analysis of
site visit logs demonstrates the usefulness of our tool.

• We added more detailed related work analysis.

2 MINING SIMILAR TECHNOLOGY

Studies [12], [13] show that Stack Overflow tags iden-
tify computer programming technologies that questions
and answers revolve around. They cover a wide range
of technologies, from algorithms (e.g., dijkstra, rsa), pro-
gramming languages (e.g., golang, javascript), libraries and

https://difftech.herokuapp.com/
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Fig. 3. The architecture of the two word embeddings models (different
arrow directions). The continuous skip-gram model predicts surrounding
words given a central word, and the CBOW model predicts the central
word based on the context words.

frameworks (e.g., gson, flask), and development tools (e.g.,
sublime, vmware). Many of them are comparable, such as (tcp,
udp), (nltk, opennlp), (swift, objective-c), etc. In this work, we
regard Stack Overflow tags as a collection of technologies
that developers would like to compare. We leverage word
embedding techniques to infer semantically related tags,
and develop natural language methods to analyze each
tag’s TagWiki to determine the corresponding technology’s
category (e.g., algorithm, library, IDE). Finally, we build a
knowledge base of comparable technologies by filtering the
same-category, semantically-related tags.

2.1 Learning Tag Embeddings
Word embeddings are dense low-dimensional vector repre-
sentations of words that are built on the assumption that
words with similar meanings tend to be present in a similar
context. Studies [14], [15], [16] show that word embeddings
are better at capture rich semantic and syntactic properties
of words for measuring word similarity compare with tra-
dition n-gram model, and Chen et al.’s work [13] further
confirms the effectiveness of tag embedding for inferring
similar third-party libraries. In our approach, given a corpus
of tag sentences, we use word embedding methods to learn
the word representation of each tag using the surrounding
context of the tag in the corpus of tag sentences. For exam-
ple, given single tag sentences like “python, nlp, nltk, pos-
tagger”, the word nltk is encoded by its context “python,
nlp, pos-tagger”. Other words with similar context may thus
share a similar meaning with it.

There are two kinds of widely-used word embedding
methods [14], the continuous skip-gram model [17] and the
continuous bag-of-words (CBOW) model. As illustrated in
Fig. 3, the objective of the continuous skip-gram model is
to learn the word representation of each word that is good
at predicting the co-occurring words in the same sentence
(Fig. 3(a)), while the CBOW is the opposite, that is, predict-
ing the center word by the context words (Fig. 3(b)). Note
that word order within the context window is not important
for learning word embeddings.

Specifically, given a sequence of training text stream
t1, t2, ..., tk, the objective of the continuous skip-gram model
is to maximize the following average log probability:

L =
1

K

K∑
k=1

∑
−N�j�N,j 6=0

log p(tk+j |tk) (1)

while the objective of the CBOW model is:

L =
1

K

K∑
k=1

log p(tk|(tk−N , tk−N+1, ..., tk+N )) (2)

Tag Wiki:

Part of Speech:

RSA     is     a     common     public     key     algorithm.

NN     VBZ  DT        JJ             JJ         JJ           NN

Fig. 4. POS tagging of the definition sentence of the tag RSA

where tk is the central word, tk+j is its surrounding word
with the distance j, and N indicates the window size. In
our application of the word embedding, a tag sentence is
a training text stream i.e., all tags attached to the post, and
each tag is a word. As a tag sentence is short (has at most 5
tags), we set N as 5 in our approach so that the context of
one tag is all other tags in the current sentences. That is, the
context window contains all other tags as the surrounding
words for a given tag. Therefore, tag order does not matter
in this work for learning tag embeddings.

To determine which word-embedding model performs
better in our comparable technology reasoning task, we
carry out a comparison experiment. The details are dis-
cussed in Section 6.1.3.

2.2 Mining Categorical Knowledge

In Stack Overflow, tags can be of different categories. To
determine the category of a tag, we resort to the tag def-
inition in the TagWiki of the tag. The TagWiki of a tag is
collaboratively edited by the Stack Overflow community. A
TagWiki description usually starts with a short sentence to
define a tag. For example, the TagWiki of the tag Matplotlib
starts with the sentence “Matplotlib is a plotting library
for Python”. Typically, the first noun just after the be verb
defines the category of the tag. For example, from the tag
definition of Matplotlib, we can learn that the category of
Matplotlib is library.

Based on the above observation, we use NLP meth-
ods [13] to extract such nouns from the tag definition
sentence as the category of a tag. Given the TagWiki of a
tag in Stack Overflow, we extract the first sentence of the
TagWiki description. We then apply Part of Speech (POS)
tagging to the extracted sentence. POS tagging is the process
of marking up a word in a text as corresponding to a
particular part of speech, such as noun, verb, adjective.
NLP tools usually agree on the POS tags of nouns, and
the small-scale pilot study show that when using Python,
NLTK performs slightly better than Standford-CoreNLP and
spaCy. Hence we adopt NLTK in this work. In NLTK, the
noun is annotated by different POS tags [18] including NN
(Noun, singular or mass), NNS (Noun, plural), NNP (Proper
noun, singular), NNPS (Proper noun, plural). Fig. 4 shows
the results for the tag definition sentence of RSA. Based on
the POS tagging results, we extract the first noun (algorithm
in this example) after the be verb (is in this example) as the
category of the tag. That is, the category of RSA is algorithm.
Note that if the noun is some specific word, such as system or
development, we will further check its neighborhood words
to see if it is e.g. operating system or independent development
environment.

With this method, we obtain 318 categories for the 23,658
tags (about 67% of all the tags in TagWiki). We manually
normalize these 318 categories labels, including merging app
and applications as application, libraries and lib as library, and
normalizing uppercase and lowercase (e.g., API and api).
As a result, we obtained 167 categories and categorized
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TABLE 1
Examples of filtering results by categorical knowledge (in red)

Source Top-5 recommendations from word embedding
nltk nlp, opennlp, gate, language-model, stanford-nlp
tcp tcp-ip, network-programming, udp, packets, tcpserver
vim sublimetext, vim-plugin, emacs, nano, gedit
swift objective-c, cocoa-touch, storyboard, launch-screen
bubble-sort insertion-sort, selection-sort, mergesort, timsort, heapsort

them into five general categories: programming language,
platform, library, API, and concept/standard [19]. This gen-
eralization step is necessary, especially for the library tags
that broadly refer to the tags whose fine-grained categories
can be library, framework, api, toolkit, wrapper, and so on.
For example, in Stack Overflow’s TagWiki, junit is defined
as a framework, google-visualization is defined as an API, and
wxpython is defined as a wrapper. All these tags are referred
to as library tags in our approach.

Although the above method obtains the tag category for
the majority of the tags, the first sentence of the TagWiki of
some tags is not formatted in the standard “tag be noun
phrase” form. For example, the first sentence of the tag
itext is “Library to create and manipulate PDF documents in
Java”, or for markermanager, the tag definition sentence is “A
Google Maps tool”. As there is no be verb in this sentence.
According to our observation, for most of such cases, the
category of the tag is very likely that the category word
appears as the first noun phrase that match the existing
category words in the definition sentence. Therefore, we
use a dictionary look-up method to determine the category
of such tags. Specially, we use the 167 categories obtained
using the above NLP method as a dictionary to recognize
the category of the tags that have not been categorized using
the NLP method. Given an uncategorized tag, we scan the
first sentence of the tag’s TagWiki from the beginning, and
search for the match of a category label in the sentence.
If a match is found, the tag is categorized as the matched
category. For example, the tag itext is categorized as library
using this dictionary look-up method. Note that one tag may
be corresponding to multiple category match and we take
all of them into consideration. Using the dictionary look-up
method, we obtain the category for 9,648 more tags.

2.3 Building a Similar-technology Knowledge Base
Given a technology tag t1 with its vector vec(t1), we first
find most similar library t2 whose vector vec(t2) is most
closed to it, i.e.,

argmax
t2∈T

cos(vec(t1), vec(t2)) (3)

where T is the set of technology tags excluding t1, and
cos(u, v) is the cosine similarity of the two vectors.

Note that tags whose tag embedding is similar to the
vector vec(t1) may not always be similar technologies. For
example, tag embeddings of the tags nlp, language-model are
similar to the vector vec(nltk). These tags are relevant to the
nltk library, but they are not comparable libraries to the nltk.
Some mis-tagging may also negatively influence the quality
tag embedding [20], [21]. In our approach, we rely on the
category of tags (i.e., categorical knowledge) to return only
tags within the same category as candidates and also help

mitigate the noise. Some examples can be seen in Table 1.
In the third line of the table, the tag vim-plugin is defined
as Library categories, which is different from vim. So we
remove it from the vim similar technology list.

In practice, there could be several comparable technolo-
gies t2 to the technology t1. Thus, we select tags t2 with
the cosine similarity in Eq. 3 above a threshold Thresh. We
set Thresh as 0.4 according to our previous work [22], and
a smaller threshold leads to low accuracy whereas a larger
one results in low coverage. Take the library nltk (a NLP
library in python) as an example. We will preserve several
candidates which are libraries such as textblob, stanford-nlp.

3 MINING COMPARATIVE OPINIONS

For each pair of comparable technologies in the knowledge
base, we analyze the Q&A discussions in Stack Overflow
to extract plausible comparative sentences by which Stack
Overflow users express their opinions on the compara-
ble technologies. Previous works [23], [24] have defined
comparative opinions as sentences that are expressed in a
comparative form (e.g. “X is better than Y”) where peo-
ple compare two objects. In grammar constructs, people
use comparative adjectives/adverbs to compare objects. We
summarised comparative sentence patterns according to the
comparative adjectives/adverbs and our observations of
posts in Stack Overflow. Note that technology comparison
may also be expressed in different forms such as one single
sentence, consecutive sentences, code fragments, tables or
figures. But we only take the natural-language sentences
into consideration since it is the most common way of
doing technology comparison. In our work, we extract the
comparative sentences first. Then, we measure the simi-
larity among the comparative sentences, and cluster them
into several groups, each of which we aim will identify a
prominent aspect of the technology comparison that users
are concerned with.

3.1 Extracting Comparative Sentences

To extract comparative sentences, we first carry out some
preprocessing to the Stack Overflow post content. Then
we locate the sentences that contain the name of the two
technologies, and further select the comparative sentences
that satisfy a set of comparative sentence patterns.

3.1.1 Preprocessing
To extract trustworthy opinions about the comparison of
technologies, we consider only answer posts with positive
score points. Then we split the textual content into individ-
ual sentences by punctuations like “.”, “!”, “?”. We remove
all sentences ending with question marks, as we want to
extract facts instead of doubts. We lowercase all sentences
to make the sentence tokens consistent with the technology
names because all tags are in lowercase.

In a technical discussion in Stack Overflow, developers
may adopt some pronoun like “it”, “that”, “which” to
represent the technology. For example, given the paragraph
in Figure 5, the two “it” in the second sentence refers to
“postgresql” in the first sentence. However, with some cases,
the reference may be too far from its source, leading to a
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For	any	application	that	wants	to	use	an	open	source	database,	the	hands-down	answer	is	Postgresql

It's a lot more "enterprise-ready" than Mysql, not to mention that it follows the SQL standard a lot better

Mysql has improved a lot with its later versions, but Postgresql still beats it in every category

Fig. 5. An example of coreference resolution in comparative sentences.
TABLE 2

Examples of alias
Tech term Synonyms Abbreviation
photoshop adobe photoshop, photoshops ps
dataframe data-frame, pd.dataframe df

libgd gd library gd
microsoft sql server ms-sql, msql, ms sql mssql
breadth-first search breadth first search, breadth-first-search bfs

negative influence on the location of comparative sentences.
Therefore, we adopt a coreference resolution algorithm [25]
to recover the pronoun before locating comparative sen-
tences. Conventionally, a coreference resolution is based on
a set of manual-crafted rules by analyzing dependency tree
of words in the sentence. However, those rules may not
be scalable, therefore, we adopt the state-of-the-art neural
network based coreference method, named NeuralCoref2.
It feeds word embedding of potential words around each
mention to two neural networks with one for giving score
for finding a possible antecedent, and the other giving a
score for a mention having no antecedent. Given two scores,
we compare them and pick the highest score to determine
whether the mention has an antecedent and, if so, which
word it is.

3.1.2 Locating Candidate Sentences
Sentences mentioning a pair of comparable technologies
may contain a comparison opinion between them. Accord-
ing to our observation, the comparison may occur in either
one single sentence, or in contextual sentences. Therefore,
the candidate comparison sentences may be single sentences
mentioning two comparable technologies, or be consecutive
sentences with each containing one comparable technology.

Note that using only the tag names is not enough. As
posts in Stack Overflow are informal discussions about
programming-related issues, users often use aliases to refer
to the same technology. Aliases of technologies can be ab-
breviations, synonyms and some frequent misspellings. For
example, there are several different alias of “visual studio”
in many forms such as “visual-studio” (synonym), “vs”
(abbreviation), and “visual studion” (misspelling) in the dis-
cussions. The presence of such aliases will lead to significant
missing of comparative sentences if we match technology
mentions in a sentence with only the tag names. Chen et
al.’s work [26] builds a large thesaurus of morphological
forms of software-specific terms, including abbreviations,
synonyms and misspellings. Table 2 shows some examples
of technologies aliases in this thesaurus. Based on this
thesaurus, we find 7310 different alias for 3731 software
technologies. These aliases help to locate more candidate
comparative sentences that mention certain technologies.

3.1.3 Selecting Comparative Sentences
To identify comparative sentences from candidate sentences,
we develop two sets of comparative sentence patterns:

2. https://github.com/huggingface/neuralcoref

one for the single sentence and the other for contextual
sentences. The single sentence pattern is a sequence of POS
tags. For example, the sequence of POS tags “RBR JJ IN” is
a pattern that consists of a comparative adverb (RBR), an
adjective (JJ) and subsequently a preposition (IN), such as
”more efficient than”, “less friendly than”, etc. We extend
the list of common POS tags to enhance the identifica-
tion of comparative sentences. More specifically, we create
four comparative POS tags: CV (comparative verbs, e.g.
prefer, compare, beat), CIN (comparative prepositions, e.g.
than, over), CCONJ (comparative conjunctions. e.g. whereas,
while), NW (negation words, e.g. wouldn’t, doesn’t ), and
TECH (technology reference, including the name and aliases
of a technology, e.g. python, eclipse).

Based on data observations of comparative sentences, we
summarise four comparative patterns for single sentences,
as shown in Table 3. To make the patterns more flexible,
we use a wildcard character to represent a list of arbitrary
words to match the pattern. For each sentence mentioning
the two comparable technologies, we obtain its POS tags
and check if it matches any one of four patterns. If so, the
sentence will be selected as a single comparative sentence.
Note that the rules for matching the comparative sentences
are adopted following the order in Table 3.

For contextual candidate sentences, we develop three
patterns for identifying comparative opinions, as shown
in Table 4. The first two patterns are similar to the first
two patterns for the single sentence, as sometimes devel-
opers in Stack Overflow may give their comparison in
two consecutive sentences e.g., “Postgres has a richer set
of abilities and a better optimizer. Its ability to do hash
joins often makes it much faster than MySQL for joins.”
Therefore, for consecutive sentences containing comparable
technologies separately, we will check if either sentence
fits one of these two patterns. Note that there are four
single-sentence patterns and we only take the first two of
them into the contextual-sentence patterns. According to
our observation, the 3rd and 4th single-sentence patterns are
not very accurate The details are discussed in Section 6.2.

The other pattern is that one contextual sentence is the
affirmation (AFF), while the other is the negation (NEG),
with at least one comparable technology as the subject of
one sentence. For example, the prior sentence “Cassini does
not support HTTPs” is the negation sentence, and the latter
sentence “However, you can use IIS to do this” is the affir-
mation sentence, resulting in the comparison opinion that
IIS can support the feature that is not owned by Cassini. To
detect such a pattern, we first create a list of negation words
defined as “NW” in POS tag such as couldn’t, wouldn’t, not.3.
For each pair of sentences, we check if either of them match
the pattern “TECH NW”, so that we locate the negation
sentence. Then, for the other affirmation sentence, it must
match any one of the following patterns:“TECH VB NN”,
“TECH VB JJ”, “TECH VB RB”, and “VB TECH TO VB”.

3.2 Measuring Sentence Similarity
To measure the similarity of two comparative sentences,
we adopt the Word Mover’s Distance [8] which is espe-

3. The full list can be seen at https://sites.google.com/view/
difftechplus

https://github.com/huggingface/neuralcoref
https://sites.google.com/view/difftechplus
https://sites.google.com/view/difftechplus
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TABLE 3
Patterns of comparative single sentences

No. Pattern Sequence example Original sentence

1 TECH * VBZ * (JJR ∨ RBR)
innodb has 30% higher InnoDB has 30% higher performance than MyISAM on average.
ubuntu is better i believe that ubuntu is better than centos.

2 ((RBR JJ) ∨ JJR) * CIN * TECH
faster than coalesce Isnull is faster than coalesce.
more complex than mysql Triggers in postgresql have a syntax a bit more complex than mysql.

3 CV * CIN TECH recommend scylla over cassandra I would recommend scylla over cassandra.
4 CV VBG TECH recommend using html5lib I strongly recommend using html5lib instead of beautifulsoup.

5 TECH * CCONJ * TECH mergesort * whereas Quicksort
Mergesort worst case complexity is O(n logn) whereas Quicksort
worst case is O(n2).

TABLE 4
Patterns of comparative contextual sentences

No. Pattern Sequence example Original sentence

1 TECH * VBZ * (JJR ∨ RBR) triple des is generally better Triple des is generally better but there are some known theoretical attacks.
If you have a choice of cipher you might want to look at aes instead.

2 ((RBR JJ) ∨ JJR) * CIN * TECH faster than MySQL Postgres has a richer set of abilities and a better optimizer.
Its ability to do hash joins often makes it much faster than MySQL for joins.

3 AFF — NEG cassini does not Cassini does not support https.
iis to do However you can use iis to do this.

Fig. 6. An illustration of measuring similarity of two comparative sen-
tences

cially useful for short-text comparison. In the implemen-
tation, given two sentences S1 and S2, we take one word
i from S1 and another j from S2. Let their word vectors
be vi and vj . The Euclidean distance between i and j is
c(i, j) = ||vi − vj ||2. To avoid confusion between word
and sentence distance, we will refer to c(i, j) as the cost
associated with “traveling” from one word to another. One
word i in S1 may move to several different words in the
S2, but its total weight is 1. So we use Tij ≥ 0 to denote
how much of word i in S1 travels to word j in S2. It costs∑

j Tijc(i, j) to move one word i entirely into S2. We define
the distance between the two sentences as the minimum
(weighted) cumulative cost required to move all words from
S1 to S2, i.e., D(S1, S2) =

∑
i,j Tijc(i, j). This problem is

very similar to transportation problem i.e., how to spend
less to transform from sourceA1, A2, ... to target B1, B2, ....
Getting such minimum cost is a well-studied optimization
problem of earth mover distance [27], [28].

To use word mover’s distance in our approach, we first
train a word embedding model based on the Stack Overflow
post content so that we get a dense vector representation
for each word. Word embedding has been shown to be
able to capture rich semantic and syntactic information
of words. Our approach does not consider word mover’s
distance for all words in a sentence. Instead, for each
comparative sentence, we extract only keywords with POS
tags that are most relevant to the comparison, including
adjectives (JJ), comparative adjectives (JJR) and nouns (NN,
NNS, NNP and NNPS), not including the technologies

under comparison. Then, we compute the minimal word
movers’ distance between the keywords in one sentence
and those in the other sentences. Base on the distance, we
further compute the similarity score of the two sentences by
similarity score(S1, S2) =

1
1+D(S1,S2)

The higher the score
is, the more similar the two sentences. If the similarity score
between the two sentences is larger than the threshold, we
regard them as similar. The threshold is 0.55 in this work,
determined heuristically by a small-scale pilot study4. We
show some similar comparative sentences by word mover’s
distance in Table 5.

To illustrate this use of word movers’ distance, we show
an example in Figure 6 with two comparative sentences
comparing apache and nginx: “nginx uses less memory than
apache” and “’Apache takes more space than nginx’. The key-
words in the two sentences that are most relevant to the
comparison are highlighted in bold. We see that the mini-
mum distance between the two sentences is mainly the ac-
cumulation of word distance between pairs of similar words
(uses, takes), (less, more), and (memory, space). As the distance
between the two sentences is small, the similarity score is
high even though the two sentences use rather different
words and express the comparison in reverse directions.

3.3 Clustering Representative Comparison Aspects
For each pair of comparable technologies, we collect a set
of comparative sentences about their comparison in Sec-
tion 3.1. Within these comparative sentences, we find pairs
of similar sentences in Section 3.2. We take each comparative
sentence as one node in the graph. If the two sentences are
determined as similar, we add an edge between them in
the graph. In this way, we obtain a graph of comparative
sentences for a given pair of comparative technologies.

Although some comparative sentences are very different
in words or comparison directions (examples shown in
Fig. 6 and Table 5 such as “But safari takes more time

4. We experimentally test the threshold as 0.45, 0.50, 0.55, 0.60, and
select 0.55 as the most preferred value. Detailed results are at https:
//sites.google.com/view/difftechplus

https://sites.google.com/view/difftechplus
https://sites.google.com/view/difftechplus
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TABLE 5
Examples of similar comparative sentences by Word Mover’s Distance

Comparable technology pair Comparative sentences

quicksort & mergesort Quicksort is done in place and doesn’t require allocating memory, unlike mergesort.
Mergesort would use more space than quicksort.

swing & awt Consider using swing which has much better performance over the old heavyweight awt.
Yes swing has newer and better apis than awt.

google-chrome & safari But safari takes more time than google-chrome browser.
I get a lot of results about how safari is slower than google-chrome.

get & post Post is also more secure than get because you aren t sticking”.
When you use post data is a a lot more safer than get and you can send large no. of request parameters.

tcp & udp Tcp is a slower more reliable protocol than udp is.
This is the reason why udp is much faster than tcp.

Myisam is 
often faster 

than innodb in 
terms of raw 
performance

Innodb is 
transactional so 
inserts will be 
slower than 
myisamInnodb 

performs 
faster than 
myisam

Myisam is 
not faster 

than innodb 
anymore for 

most types of 
queries

Innodb has 
foreign keys 

and relationship 
constraints 

while myisam 
does not

Doctrine2 uses 
innodb which 

supports foreign keys, 
but as myisam does 
not support this yet 

you can not use 
myisam to manage 

doctrine entities

Innodb 
provides more 
complex keys 
structure than 

myisam foreign 
keys and 

regeneration 
keys is really 

slow in innodb

Fig. 7. Communities in the graph of comparative sentences

than google-chrome browser” and “I get a lot of results
about ho safari is slower than google-chrome”), they may
still share the same comparison opinions. In graph theory,
a set of highly correlated nodes is referred as a community
(cluster) in the network. Based on the sentence similarity,
we cluster similar opinions by applying the community
detection algorithm to the graph of comparative sentences.
In this work, we use the Girvan-Newman algorithm [9], a
hierarchical community detection method which has been
one of the most known algorithms proposed for community
detection [29]. It uses an iterative modularity maximization
method to partition the network into a finite number of dis-
joint clusters that will be considered as communities. Given
an undirected connected network, the algorithm calculates
the betweenness of all existing edges first. Then it removes
the edges with the highest betweenness. The two processes
are repeated until all edges are removed. Then the connected
nodes are classified into different communities. Note that
each node must be assigned to exactly one community.
Fig. 7 shows the graph of comparative sentences for the
comparison of myisam and innodb (two storage engine for
Mysql), in which each node is a comparative sentence, and
the detected communities are visualized in the same color.

As seen in Fig. 7, each community may represent a
prominent comparison aspect of the two comparable tech-
nologies. But some communities may contain too many
comparative sentences to understand easily. Therefore, we
use TF-IDF (Term Frequency Inverse Document Frequency)
to extract keywords from comparative sentence in one com-
munity to represent the comparison aspect of this commu-
nity. TF-IDF is a statistical measure to evaluate the impor-
tance of a word to a document in a collection. This consists
of two parts: term frequency (TF, the number occurrences
of a term in a document) and inverse document frequency
(IDF, the logarithm of the total number of documents in
the collection divided by the number of documents in the
collection that contain the specific term). For each commu-
nity, we remove stop words in the sentences, and regard

Labeled Sentences
Neutral: XXXX

Support Tech A: XXXX
Support Tech B: XXXX

Wikipedia &
Bookcorpus

Pretrained BERT Classifier

Fine-
tune

Comparative
Sentences

Neutral
Support B
Support A

Users opinions on A and B

Aggregate

Fig. 8. Summarizing overall opinions towards each technology

each community as a document. We take the top-3 words
with largest TF-IDF scores as the representative aspect for
the community. Table 6 shows the comparison aspects of
four communities for comparing UDP with TCP. The rep-
resentative keywords directly show that the comparison
between UDP with TCP mainly focuses on four aspects:
speed, header, usability, and fields that they are used for.

4 SUMMARIZING OVERALL OPINION

For some comparable technologies, there may be too many
comparison opinions, which are too time-consuming for
developers to read. To address this, we further develop a
sentiment classifier based on the BERT model [10] for auto-
matically distilling the overall opinion towards the compa-
rable technologies. That summarization can be an important
criteria for developers to determine which technology to
adopt. To differentiate the pros and cons for each technol-
ogy, we further break down the overall opinion into each
aspect by carrying out sentiment analysis of all sentences
in each cluster. Therefore, when developers are comparing
comparable technologies, they can focus on the aspect that
matters most. The general process of summarising overall
opinion is shown in Fig. 8.

For summarizing the overall opinions toward compara-
ble technologies, we formulate it as a classification prob-
lem, which are commonly used in the opinion extraction
problems [30], [31] . Given a set of comparative sentences,
we build a classifier for identifying which technology does
each sentence support. By counting the total number of
support sentences for each technology, we obtain the sen-
timent summarization of them. We replace the comparable
technology pairs with two unique tokens i.e., TechA (first
occurrence) and TechB (second occurrence) to generalize
two technology pairs. Note that in addition to the sentence
sentiment, we also need to tell sentiment direction to TechA
or TechB. Therefore, we cannot use existing sentiment anal-
ysis tools [32], [33], but develop our own model.

However, a supervised learner requires a large-scale la-
beled dataset, which is labor-extensive and time-consuming.
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TABLE 6
The representative keywords for clusters of UDP and TCP.

Representative keywordsComparative sentences

faster slower reliable
One often finds the argument that udp is faster than tcp
Udp is way lighter and faster but somewhat less reliable than tcp.
Udp is generally faster than tcp as it does not have to do the overhead checking of consistency that tcp must deal with.

header connection size
You will notice that the tcp header has more fields than the udp header and many of those fields will be populated.
Udp communication is connection less as compared to tcp which need a connection.
The header size of udp is less than tcp.

harder, easier,travelsal
Doing p2p nat traversal over tcp is a bit harder than udp.
Keep in mind that implementing udp traversal is easier than tcp.
It was introduced since the nat traversal for tcp is much more complicated than udp.

To overcome this, we adopted the state-of-the-art model,
BERT for this work. BERT (Bidirectional Encoder Repre-
sentations) [10] is a bidirectional unsupervised language
representation model that maps the words or sentences
into vectors. It is designed based on the Transformer ar-
chitecture with self-attention mechanism [34]. The BERT
model is trained for two targets including the masked
language model (i.e., predicting the words based on the
context) and the next sentence prediction. These two targets
make the BERT model capture both the word semantics
and sentence semantics from large data, resulting in infer-
ring high-quality semantic representation. Google released
a pretrained BERT model [35] based on a large-scale corpus
including Wikipedia and BookCorpus [36] which contains
2,500 million words from English Wikipedia sentences and
800 million words from 11,038 unpublished books. As the
pretrained model is well trained based on such big data,
fine-tuning it with small labeled dataset can still lead to
good performance in down-stream NLP task like text cate-
gorization and sentiment analysis [10], [37], [38]. To leverage
that learned knowledge, we only fine-tune the pretrained
BERT model by adding a new layer on top of it. We freeze
the parameters of existing the pretrained model but only
train the final layer based on a small manually-labeled
dataset for adapting it with domain-specific information.

5 IMPLEMENTATION

5.1 Dataset
We take the latest Stack Overflow data dump [39] (re-
leased on 4 September 2019) as the data source. It contains
18,154,493 questions with 55,665 unique tags, and 27,765,324
answers. With the approach in Section 2, we collect in total
14,876 pairs of comparable technologies. Among these tech-
nologies, we extract 26,017 comparative sentences for 2,410
pairs of comparable technologies. We use these technology
pairs and comparative sentences to build a knowledge base
for technology comparison.

5.2 Tool Support
Based on our proposed approach, we implemented a practi-
cal website5 for developers [40]. With the knowledge base of
comparative sentences mined from Stack Overflow, our site
can return an informative and aggregated view of compara-
tive sentences in different aspects. For example, as shown
in Fig 9, given a pair of comparable technologies Emacs
and Vim, the tagWiki definition is below each technology

5. https://difftech.herokuapp.com/

Opinion
Summarization

Tagwiki Description

Comparative
Technologies

Clusters Keywords

Link to Original Post

Aspect Opinion

Fig. 9. The screenshot of our website DIFFTECH and some important
elements in the website

name. About 56.4% of the users support using Vim instead
of Emacs (shown in the doughnut chart). The post trend
shows that compared with Emacs, there are more people
talking about Vim. We can also see that the five clusters
clarified at the top left corner. For each clustered aspect, we
list the comparative sentences below and attach the direct
link for each comparative sentence to its original post. Users
can click the link for retrieving more content. In addition
to the comparative opinions, we add the summarization
of developers’ preference towards the technology including
the overall preference and break-down preference in each
cluster. We also set up a “feedback” section in our site
to receive users’ feedback such as error reporting, new
comparative technologies, feature requests, etc.

5.3 Visitor Analysis

We released our website and promoted it on several sites,
such as StackApps [41] and Reddit [42]. We embedded
Google Analytics into our website to monitor the site traffic.
Fig. 10 shows the Google Analytics data from 3rd October
2019 to 5th December 2019. It shows that about 958 users
from 63 different countries visited our website. These users
viewed 2,234 pages and each session lasts for nearly 2
minutes. Note that most users come to our site with a very
specific target, i.e., comparing a pair of similar technologies,
so, the average number of visited pages in each session is
rather small. Most users came from the U.S. (32.94%), with

https://difftech.herokuapp.com/
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(a) Visiting Statics (b) Returning Users (c) Geo Map

Fig. 10. The traffic of our website from Google Analytics

Fig. 11. Top 8 most visited pages

other countries such as China (17.51%), Japan (8.31%), etc.
Nearly 5% of the users come back to visit our website again,
indicating the usefulness and attraction of our site.

Among all visiting technology pairs, users compared
gson with jackson most frequently (338 times) and other
frequent technology pairs like mysql vs postgresql, lisp vs
scheme as seen in Fig 11. Apart from the visiting, some users
also post comments under our advertisements in Reddit
such as “Thank you ...will share the word”, “It was actually
better than I expected, at least for the suggested comparisons. Good
job!”. They also provided some constructive suggestions for
improving our tool, such as “This sounds interesting. However
I think it would be better if there were options to add to the
technologies, pros, cons and usage.”.

6 EVALUATION

In this section, we evaluate each step of our approach. As
there is no ground truth for technology comparison, we
have to manually check the results of each step or build
the ground truth. And as it is clear to judge whether a tag is
of a certain category from its tag description, whether two
technologies are comparable, and whether a sentence is a
comparative sentence, we recruited two Masters students to
manually check the results of these three steps. Only results
that they both agree upon are regarded as a ground truth for
computing relevant accuracy metrics. Those results without
consensus were given to the third judge, a PhD student
with more experience. All three students are majoring in
computer science and computer engineering in our school,
and they have diverse research and engineering background
with different software tools and programming languages
in their work. For replication purposes we have released all
experimental data and results on our website6.

6.1 Accuracy of Extracting Comparable Technologies
We report on our evaluation of the accuracy of tag category
identification, the important of tag category for filtering out
irrelevant technologies, and the impact of word embedding
models and hyperparameters.

6. https://sites.google.com/view/difftechplus

6.1.1 The Accuracy of Tag Category
From 33,306 tags with tag category extracted by our method,
we randomly sample 200 tags for manual checking (see
Section 2.2). Note that Nassif et al [43]’s work is similar
to our approach in extracting tags categories. Therefore, we
take it as the baseline and also manually checked the results
from it. Our tags category extraction has an accuracy of 88%
whereas their accuracy is 86.5%.

According to our observation, two reasons lead to the
erroneous tag categories. First, some tag definition sentences
are complex which can lead to erroneous POS tagging
results. For example, the tagWiki of the tag rpy2 states
that “RPy is a very simple, yet robust, Python interface to
the R Programming Language”. The default POS tagging
recognizes simple as the noun which is then regarded as
the category by our method. Second, the dictionary look-
up method sometimes makes mistakes, as the matched
category may not be the real category. For example, the
TagWiki of the tag honeypot states “A trap set to detect or
deflect attempts to hack a site or system”. Our approach
matches the system as the category of the honeypot.

6.1.2 The Importance of Tag Category
To check the importance of tag category for accurate com-
parable technology extraction, we set up two methods. One
uses word embedding and tag category filtering, and the
other uses only word embedding. The word embedding
model in two methods are both skip-gram model with the
word embedding dimension as 800. We randomly sampled
150 technology pairs extracted from each method, and man-
ually checked if the extracted technology pair is actually
comparable or not. Results show that the performance of
the model with tag category (90.7%) is much better than
that without the tag category filtering (29.3%).

6.1.3 The impact of parameters of word embedding
There are two important parameters for the word embed-
ding, and we test its impact on the the performance of
our method. First, we compare the performance of CBOW
and Skip-gram mentioned in Section 2.1 by sampling 150
technology pairs extracted by each method under the same
parameter setting (the word embedding dimension is 400).
The results show that Skip-gram model (90.7%) outperforms
the CBOW model (88.7%), but the difference is marginal.

Second, we randomly sample 150 technologies pairs
by the skip-gram model with different word embedding
dimensions, and check the accuracy. From the dimension
200 to 1000 with the step as 200, the accuracy is 70.7%,
72.7%, 81.3%, 90.7%, 87.3%. We can see that the model with
the word embedding dimension as 800 achieves the best
performance. Finally, we take the Skip-gram model with 800
word-embedding dimension as the word embedding model
to obtain the comparable technologies in this work.

6.2 Accuracy and coverage of comparative sentences
6.2.1 Coverage of comparative sentences
To demonstrate the coverage of comparative sentences of
our summarized patterns, we first collect all sentences (in-
cluding single or consecutive sentences) mentioning similar
technologies as candidate comparative sentences form Stack

https://sites.google.com/view/difftechplus
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TABLE 7
The distribution of comparative sentences in patterns

Single sentence
No. Pattern Count

1 TECH * VBZ * JJR/RBR 56
2 (RBR JJ) /JJR * CIN * TECH 58
3 CV * CIN TECH 17
4 CV VBG TECH 4
5 TECH * CCONJ * TECH 26

Contextual sentences
No. Pattern Count

1 TECH * VBZ * JJR/RBR 15
2 (RBR JJ) /JJR * CIN * TECH 5
3 AFF-NEG 12

Overflow. We then randomly select 200 of them for the
manual inspection i.e., two authors manually check if each
sentence satisfies the patterns summarized by us. Table 7
shows that most (80.5%) comparative sentences are covered
by our sentence patterns. Note that the total number in Ta-
ble 7 is larger than the total selected comparative sentences
as some sentences can be fit into multiple patterns.

We further analyse reasons why some comparative sen-
tences are not covered by our patterns. First, due to some
grammar errors or typos in the post negative influence
the POS tagger, results in the unmatching to our patterns.
Second, some comparative sentences are written in a casual
way like “Emacs work like IDE, heavy. Vim like editor,
lightweight, it basically boils down to automated conven-
tions (Maven) vs. absolute flexibility (Ant)”

6.2.2 Accuracy of the comparative sentence patterns

We evaluate the accuracy of our approach in finding com-
parative sentences from the corpus. First we randomly sam-
ple 400 extracted comparative sentences (50 sentences for
each comparative sentence pattern in Table 3 and Table 4).
We manually check the accuracy of the sampled sentences
and Table 8 shows the results. The overall accuracy of
comparative sentence extraction is 88.8%, and our approach
is especially accurate for the first two patterns for single
sentence and all three patterns for contextual sentences. The
3rd and 4th patterns for a single sentence do not achieve
good performance due to the relatively loose conditions.
That is also why we do not use these two patterns for
extracting contextual comparative sentences.

We further check the wrong extraction of comparative
sentences and find that most errors from single sentence
patterns are caused when the two comparative technologies
are listed together for a similar feature, i.e. “Java framework
awt or swing makes more sense for something this simple” or
when the two comparative technologies are used to compare
with a third technology like “I mean it came as a surprise to
me that drupal is so much faster than wordpress and joomla”.
In addition, although some sentences do not contain the
question mark, they are actually interrogative sentence such
as “I also wonder if postgresql will be a win over mysql”.

6.3 Accuracy of clustering comparative sentences

We evaluate the the performance of our opinion clustering
method by comparing it with the baseline methods.

TABLE 8
The accuracy of comparative sentences extraction

Single sentence
No. Pattern #right #wrong Accuracy

1 TECH * VBZ * JJR/RBR 47 3 94%
2 (RBR JJ) /JJR * CIN * TECH 46 4 92%
3 CV * CIN TECH 42 8 84%
4 CV VBG TECH 38 12 76%
5 TECH * CCONJ * TECH 43 7 86%

Contextual sentences
No. Pattern #right #wrong Accuracy

1 TECH * VBZ * JJR/RBR 47 3 94%
2 (RBR JJ) /JJR * CIN * TECH 47 3 94%
3 AFF-NEG 45 5 90%

Total 355 45 88.8%

6.3.1 Baseline

We set up three baselines to compare with our comparative
sentence clustering method. The first baseline is the tradi-
tional TF-IDF [44] with K-means [45]. The second baseline
is based on the document-to-vector deep learning model
(i.e., Doc2vec [46]) with K-means. The third baseline is a
BERT [10] model with K-means, and the pretrained BERT
model is directly downloaded from the Google Official Site7.
All of the methods first convert the comparative sentences
into a list of vectors for each pair of comparable technologies
. We then carry out K-means clustering on the sentence
vectors into N clusters. To make the baseline as competitive
as possible, we set N at the cluster number of the ground
truth. In contrast, our method specifies its cluster number
by community detection which may differ from the cluster
number of the ground truth.

6.3.2 Ground Truth

As there is no ground truth for clustering comparative
sentences, we manually built a small-scale ground truth.
To do this, we randomly sampled 10 pairs of comparable
technologies with different number of comparative sen-
tences. For each technology pair, we read each comparative
sentence and create several clusters for these comparative
sentences. Note that some comparative sentences are unique
without any similar comparative sentence, and we put all
those sentences into one cluster. Two PhD students man-
ually labeled the data for us. Both of them have more
than 4 years of programming experience and Bachelor or
Master’s degree in Computer Science. They are also familiar
with the 10 comparative technology pairs in their daily
programming. We asked them to label the cluster categorize
sentences individually at first. After the individual manual
labelling, labelling, we calculated the Fleiss’ kappa score [47]
between them and the value (k = 0.83) indicates a very
good agreement. They then discussed any disagreement
until consensus. We take these 10 pairs as the ground truth,
whose details can be seen in Table 9.

6.3.3 Evaluation Metrics

Given the ground truth clusters, many metrics have been
proposed to evaluate clustering performance in the liter-
ature. In this work, we take the Adjusted Rand Index

7. https://tfhub.dev/tensorflow/bert en wwm uncased L-24
H-1024 A-16/1

https://tfhub.dev/tensorflow/bert_en_wwm_uncased_L-24_H-1024_A-16/1
https://tfhub.dev/tensorflow/bert_en_wwm_uncased_L-24_H-1024_A-16/1
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TABLE 9
Ground truth for evaluating clustering results

No. Technology pair #comparative sentence#cluster
1 compiled & interpreted language 34 4
2 sortedlist & sorteddictionary 18 4
3 quicksort & heapsort 51 5
4 ant & maven 83 9
5 lxml & beautifulsoup 52 6
6 awt & swing 53 7
7 jackson & gson 39 3
8 jruby & mri 25 4
9 pypy & cpython 72 7
10 memmove & memcpy 33 3

(ARI) [48], Normalized Mutual Information(NMI) [49], ho-
mogeneity, completeness, V-measure [50], and Fowlkes-
Mallows Index (FMI) [51]. For all six metrics, higher value
represents better clustering performance. For each pair of
comparable technologies, we take all comparative sentences
as a fixed list, and G as a ground truth cluster assignment
and C as the algorithm clustering assignment.

Adjusted Rand Index (ARI) measures the similarity
between two partitions in a statistical way. It first calculates
the raw Rand Index (RI) by RI = a+b

CN
2

where a is the
number of pairs of elements that are in the same cluster
in G and also in the same cluster in C , and b is the number
of pairs of elements that are in different clusters in G and
also in different clusters in C . CN

2 is the total number of
possible pairs in the dataset (without ordering) where N
is the number of comparative sentences. To guarantee that
random label assignments will get a value close to zero,
ARI is defined as ARI = RI−E[RI]

max(RI)−E[RI] where E[RI] is the
expected value of RI .

Normalized Mutual Information (NMI) measures the
mutual information between the ground truth labels G and
the algorithm clustering labels C , followed by a normaliza-
tion operation: NMI(G,C) = MI(G,C)√

H(G)H(C)
where H(G) is

the entropy of set G i.e., H(G) = −
∑|G|

i=1 P (i) log(P (i))
and P (i) = Gi

N is the probability than an objet picked
at random falls into class Gi. The MI(G,C) is the mu-
tual information between G and C where MI(G,C) =∑|G|

i=1

∑|C|
j=1 P (i, j) log( P (i,j)

P (i)P (j) )
Homogeneity (HOM) is the proportion of clusters con-

taining only members of a single class by h = 1− H(G|C)
H(G)

Completeness (COM) is the proportion of all mem-
bers of a given class are assigned to the same cluster by
c = 1 − H(C|G)

H(C) where H(G|C) is the conditional entropy
of the ground-truth classes given the algorithm clustering
assignments.

V-measure (V-M) is the harmonic mean of homogeneity
and completeness v = 2× h×c

h+c
Fowlkes-Mallows Index (FMI) is defined as the geo-

metric mean of the pairwise precision and recall: FMI =
TP√

(TP+FP )(TP+FN)
where TP is True Positive (i.e., the

number of pairs of sentences that belong to the same clusters
in both the ground truth and the predicted result), FP is
the number of False Positive (i.e., the number of pairs of
sentences that belong to the same clusters in the ground-
truth labels but not in the predicted result) and FN is
the number of False Negative (i.e., the number of pairs of

TABLE 10
Clustering performance

Method ARI NMI HOM COM V-M FMI
TF-IDF+Kmeans 0.09 0.24 0.35 0.28 0.26 0.25
Doc2vec+Kmeans 0.01 0.17 0.29 0.20 0.18 0.18
Bert+Kmeans 0.10 0.24 0.35 0.28 0.26 0.26
DIFFTECH 0.65 0.67 0.76 0.77 0.72 0.71

sentences that belongs in the same clusters in the prediction
but not in the ground truth labels).

6.3.4 Overall Performance
Table 10 shows the evaluation results. The three baseline
methods have similar results, whereas tf-idf and Sentence-
Bert are slightly better. Our model significantly outperforms
all models on all six metrics.

According to our inspection of the detailed results, we
found two reasons why our model outperforms the base-
lines. First, our model can capture the semantic meaning
of comparative sentences. TF-IDF can only find similar
sentences using the same words but count similar words like
“secure” and “safe” as unrelated. While the sentence vector
from Doc2vec is easily influenced by the noise as it takes all
words in the sentence into consideration. The BERT model
is trained using a general corpus (like Wikipeidia), which
is quite different from our technology-specific dataset, re-
sulting in the low-quality representation of domain-specific
words. Second, constructing similar sentences as a graph
in our model explicitly encodes the sentence relationships.
The community detection based on the graph can then very
effectively put similar sentences into clusters. In contrast,
for the four baselines, the error in them is accumulated and
amplified by K-means in the clustering phase.

We also analysed reasons why our model make certain
mistakes. First, since we cluster them based on the graph
that is created by the WMD algorithm, it highly depends
on the similarity score between sentences. For some very
short sentence, there may be only 1 or 2 keywords which
make it difficult to identify their community. Second, some
comparative sentences mention multiple aspects which also
make it hard to put it to any cluster.

6.4 Accuracy of Opinion Summarization
In this section, we evaluate the accuracy of our overall
opinion summarization. We compare our methods with five
baselines that are commonly used in sentence categoriza-
tion. We implement those baselines and use four metrics
to compare them with our methods, and our methods
performs better in opinion summarization than them.

6.4.1 Baselines
We set up five baselines to compare with our method. The
first baseline is TF-IDF [44] with SVM [52]. The second one is
N-gram vectorizer with SVM. The two models firstly covert
the train sentences into vectors. Then, we use the Support
Vector Machines(SVM) to predict the given sentences. An-
other two baselines are more advanced neural network-
based approaches, Convolutional Neural Network(CNN)
and Long Short Term Memory(LSTM). The last baseline
is FastText [53], which is a pre-trained model released by
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TABLE 11
Examples of labeled sentences

Label Sentence
Neutral I am not sure if TechA server will be much better than TechB

Support Tech A TechA is much better than TechB
Support Tech B TechA has worse performance than TechB

Facebook for text classification and representation learning.
To keep the comparison fair, the dataset used for training
and testing our model and the baselines is the same.

6.4.2 Dataset

As we adopt the supervised model for opinion summa-
rization, we manually create a set of labels for opinions
annotation . We randomly selected 801 and 147 comparative
sentences as the training and testing datasets respectively,
replaced the comparable technology pairs with two unique
tokens i.e., TechA and TechB (first and second occurrence)
to generalize different technology pairs. For each sentence,
two participants labeled it as one of three categories, in-
cluding supporting TechA, supporting TechB, or neutral,
shown in Table 11 The two annotators work individually
and the sentence can be taken into consideration only when
they reach the agreement. There are more sentences about
supporting TechA or TechB, but fewer neutral sentences.
To balance the data from three categories, we remove some
comparative sentences about supporting certain technology,
with 267 sentences for supporting TechA, 267 for supporting
TechB and 267 neutral ones.

6.4.3 Metrics

As this is a typical multi-class classification task, we adopted
four metrics for measuring the performance of our model
including accuracy, precision, recall, and F1-score. All of
these metrics are based on the four statistics: TP (true pos-
itive) represents the number of sentences that are correctly
classified as one label; TN (true negative) represents the
number of sentences that are corrected classified as not that
label; FP (false positive) represents the number of sentences
that are predicted as the label, but actually it’s not; FN
(false negative) represents the number of sentences that are
predicted as not the label, but actually it is of the label;

Accuracy is the proportion of correct result among the
whole test case: Accuracy = TP+TN

(TP+FP+TN+FN) , same to
the micro F1-score when each sentence has been assigned to
exactly one label.

Precision is the ratio of the correctly predicted positive
records to all positive records: Precision = TP

(TP+FP ) .
Recall is calculating the correctly predicted positive

records among all predicted positive records: Recall =
TP

(TP+FN) .
F1-score (macro) is the harmonic mean of precision and

recall, which can combine both of the two metrics above:
F1− score = 2 ∗ Precision∗Recall

(Precision+Recall) .
Note that these metrics are for binary classification by

default. As our task is a multi-class classification problem,
we adopted the macro average [54] of these metrics for each
class as the overall performance for this model. A higher
value represents better performance for all the metrics.

TABLE 12
Opinion summarization performance

Method accuracy precision recall f1-score
TF-IDF+SVM 0.544 0.516 0.521 0.516
n-gram+SVM 0.748 0.733 0.739 0.733
CNN 0.653 0.621 0.627 0.62
LSTM 0.633 0.593 0.585 0.583
FastText 0.667 0.65 0.654 0.647
DIFFTECH 0.85 0.842 0.852 0.842

TABLE 13
The accuracy of comparative sentences extraction

Source #right #wrong Accuracy
Super User 44 6 88%

Unix and Linux 42 8 84%

6.4.4 Overall Performance
Table 12 shows the experiment results. We can see that n-
gram model with SVM has the highest among other base-
lines. But compared with all baselines, our model has the
best performance with 13.6%, 14.8%, 15.2%, 14.8% increase
than the best baseline in terms of accuracy, precision, recall
and f1-score. Note that TF-IDF has the worst performance
as it can’t capture the semantic information of complex
sentences. For deep-learning based methods, CNN, LSTM,
and FastText, their performance are not as good as expected
due to the small size of our training corpus. In contrast,
our model is based on the pre-trained BERT model which
both distills the knowledge from a very large-scale general
corpus but also provides sentence-level semantic encoding.

We further checked the wrongly predicted cases. For
example, our model makes a mistake in the sentence “I am
not sure if VMware Server will be much better than Vir-
tualBox.” into supporting VMware. The sentence structure
may be too complicated for the BERT model, but a more
labeled dataset in the future may help mitigate that effect.
Some other wrong predicted cases are where the sentence
is comparing two technologies and focusing on the differ-
ences. For example in the sentence “char is guaranteed to be
smaller than int” simply indicates that the char type takes
less storage space than int type. It is a neutral expression but
our model takes it to be supporting using int.

6.5 Generality of DiffTech
In order to show the generality of our method, we selected
another two Q&A sites from the Stack Exchange Networks.
The two sites are Super User8, which is a site for computer
enthusiasts and power users, and Unix & Linux 9, which is
for users of Linux, FreeBSD and other Unix-like operating
systems. We applied our approach to both sites, and col-
lected 858 comparative sentences from the Super User site
and 611 sentences from Unix & Linux. Note that the total
questions of Super User and Unix & Linux is less than 3%
of that in Stack Overflow. We also cluster the sentences, and
summarize the overall opinions.

For the accuracy of extraction, we randomly select 50
sentences from each site and check if they are comparative
sentences or not. For Super User site, the accuracy is 88%,
and for Unix & Linux is 84% as seen in Table 13. In regards

8. https://superuser.com/
9. https://unix.stackexchange.com/

https://superuser.com/
https://unix.stackexchange.com/
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TABLE 14
Task Description

Task 1: emacs vs vim
I’m trying to find a text editor for some coding tasks. I’ve heard
emacs and vim are two good options. As I’m looking for a
powerful, multi-language support, and easy to use tool, which
one should I choose?
Task 2: apache vs nginx
I’m building up a server for my website. I need it to have a
better overall performance which includes handle requests fast,
use less memories, and easier to set up. Which one should I use?
Task 3: virtualbox vs vmware
I’m a fresh year student looking for a software that can have a
virtual Linux environment for my assignment. It doesn’t need
too much resources, or need more functions. I just need to
practice some simple command line tasks, which should I pick?
Task 4: phpunit vs simpletest
I have a PHP project and want to find a proper php testing
framework. I need a framework that have a better coverage and
well maintained. Should I use phpunit or simpletest?

of the accuracy of clustering, our model also outperforms
the other baselines. Similar to what we did in Section 6.4,
we selected and labelled 50 comparative sentences as the
test samples for each site. The accuracy for Super User is
0.78, and 0.76 for Unix & Linux. The detailed results of our
experiments can be found on this website10.

Note that the performance of our model in these two
datasets is slightly lower than that of Stack Overflow due to
several reasons. First, the users may be different, as the Stack
Overflow users are mainly developers while non-developers
for the Super User. As the rules of extracting comparative
sentences were mainly designed by the data-driven method
from Stack Overflow, the difference in content writing may
influence the result. Second, for an experiment like summa-
rizing opinions, we do not use as large a training set as Stack
Overflow for fine-tuning the BERT model which leading to
a degrading of performance. Despite these differences, our
model still works well in general.

6.6 Usefulness Evaluation
To demonstrate the usefulness of our tool, we carried out a
user study to asking participants to finish the some compar-
ison tasks with/without DIFFTECH. We collected the quan-
titative and qualitative feedback from participants to verify
the usefulness. For the control group (without DIFFTECH),
we ask participants to use Google Search to complete the
tasks as all posts in Stack Overflow has been indexed by
Google and Google is more likely to be used by developers
for software development related questions [55].

6.6.1 Tasks
Based on our previous software development process, we
designed 4 independent tasks covering different technology
categories (i.e., software, library, framework) based on our
experience in learning programming and daily development
tasks as shown in Table 14. Each task has a background
scenario that describes the basic requirements of the task.

6.6.2 Experiment Procedure
We recruited 8 Master students who major in Computer
Science with at least 2 years of programming background.

10. https://sites.google.com/view/difftechplus

TABLE 15
The comparison between our DIFFTECH and using general Google

search engine with standard deviation in the bracket. * denotes
p < 0.01, ** denotes p < 0.05

Tool Avg Time (min) Confidence Satisfaction
Google 6.08(2.4) 3.69(1.1) 3.75(0.7)
DIFFTECH 1.85(0.8)* 4.63(0.5)* 4.69(0.6)**

All of them use Google search regularly to deal with pro-
gramming issues. None of the participants were familiar
with the technology comparisons in the experimental tasks.

The experiment began with an introduction to the study.
Then, we explained and walked through all of the features
of the DIFFTECH and participants performed a training task
with DIFFTECH system to familiarize themselves with its
features. After the training session, participants were asked
to work on the four tasks. All of the four tasks were
completed individually with no interventions or discussion
by the participants. Each participant finished 2 tasks using
our tool and the other 2 using Google Search. The order of
tasks, and the order of using the experimental or baseline
system were rotated based on the Latin Square [56], which
helped to reduce learning and fatigue effects.

Participants were given a description of the tasks and
up to 10 minutes to complete each task. Once, participants
were asked to rate their satisfaction and confidence in
the information they collected (on a 5-point Likert scale
with 1 being least satisfied/confident and 5 being most
satisfied/confident). At the end, participants filled in the
System Usability Scale (SUS) questionnaire [57]. In addition,
we conducted a semi-structured interview focusing on their
perceptions and their use of features during the study.

6.6.3 Result
Table 15 shows that participants spend 1.85 minutes to
finish the task with our DIFFTECH, whereas the time of
using Google search is 6.08 minutes (Fig 12 shows the time
distribution). Most participants agree that the aggregated
comparative sentences and the summarised opinions help
a lot during the tasks. Most users are more satisfied with
the DIFFTECH results (87.5% of the users gave 4 or 5, 4.59
on average) than that from Google (62.5% of the users gave
4 or 5, 3.75 on average), leading to higher confidence with
DIFFTECH (100% of the users gave 4 or 5 for DIFFTECH while
56.3% of the users gave 4 or 5 for Google, 4.63 vs 3.69 on
average). The participants can see multiple users discuss the
similar opinions from DIFFTECH, which makes them more
confident about the answer, instead of scattered information
in Google results. Since there are not many samples, we
adopt the Wilcoxon Signed-Rank test [58] to check the
significance of the differences in these metrics. It shows that
our DIFFTECH is significantly better than the conventional
Google Search for comparing similar technologies in terms
of the time cost, results confidence and satisfaction.

We list the results from administering the System Usabil-
ity Scale questionnaire to our participants in Fig 13. Most
participants agree that our tool is easy to use, the functions
are well integrated, and they can learn to use DIFFTECH

quickly and confident in using it. They also express their
desire to use this system frequently in their future technol-

https://sites.google.com/view/difftechplus
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Fig. 12. The time of using DIFFTECH and Google Search

Fig. 13. Average score of the SUS results

ogy comparison tasks. Overall the participants are satisfied
with the implementation of DIFFTECH.

In the post-study comments, participants said that they
liked this tool as they didn’t need to apply multiple searches
to find the answer, and they appreciate the intuitive sum-
marization provided by our tool. We received some feature
requests such as the desire to compare more than 2 similar
technologies together, or if the DIFFTECH can have some
code snippets for detailed comparison. They also reported
that some of the comparative technologies they would like
to see are not included, but they were all happy to use the
feedback function to send requests.Upon request, we will
keep improving the website accordingly.

7 THREATS TO VALIDITY

There are some issues that may influence the validity of our
work. We discuss the threats of validity in this section.

Internal Validity: The major threat to internal validity is
the potential bias when constructing the ground truth, in-
cluding tag category extraction, clustering comparative sen-
tences, and label sentence opinions. To mitigate the threats,
we have at least two participants to first independently
label the same data and then resolve the disagreements by
discussion. All of the participants have more than 4-year
programming experience and Bachelor or Master’s degree
in Computer Science.

Another concern with this work is the accuracy of the
tags and posts we’re using from Stack Overflow. Since all
content in Stack Overflow is generated by users, there may
be some bias or wrong opinions in the posts or tag defi-
nitions. However, as a well-maintained most popular Q&A
site, the content quality is assured by the common tagging
practice and the collaborative editing mechanism [59], [60],
[61]. For example, according to our empirical study of 500
randomly selected tags, the TagWiki of 72.4% of them have
been revised/edited at least once since the creation. There-
fore, we assume that majority of Stack Overflow data is of
high quality and our data-driven approach that aggregate
data pieces further mitigate that issue.

During the user evaluation, some of the participants
raised that certain comparable technology pairs they would
like to search for are not included on our website. This can
be caused by (i) incomplete tags; (ii) errors in extraction
of our approach; (iii) inaccuracies in the StackOverflow
TagWiki. To mitigate this issue, we will keep improving
our method in mining similar technology tags. Inspired by
Nassif et al.’s work [43], we plan to include both definitions
from TagWiki and tag information from Wikipedia into con-
sideration when categorizing the technology tags. In such
a way, the accuracy of mining categorical knowledge will
increase and our approach shall discover more comparable
technology pairs. In addition, we have added a “leave
feedback” button on the website, to allow users to leave
new or improved comparable pairs that they would like to
know about or suggest be added. We will add them into the
comparable tag list, and run our algorithm for extracting
comparative opinions to them to update the website.

Some manual effort is involved during the category
extraction. But note that process is only one small step of
the whole pipeline, and it can be finished once offline. For
most tags (77%), their categories are accurately extracted,
and only a very small number of them need to be revised
manually. The manual process needs to be done once and
the category can be directly used in the future.

External Validity: A threat to external validity includes
the generalization of our findings for more comparable
technologies and for comparison of other Q&A sites. In
this work, we have extracted over 14k of comparable tech-
nologies, and our experiments show that we can achieve
high accuracy (88.8%) of spotting comparative sentences.
As comparison opinions appear in a similar pattern, we
can extract them even if more comparative technologies are
obtained. In Section 6.6.1, we’ve showed that our model
works well on other Q&A platforms like Super User and
Unix & Linux. To some extent, our approach can also be
generalized to other platforms with some customizations.

8 RELATED WORK

8.1 Mining similar software artefects
Finding similar software artefacts can help developers mi-
grate from one tool to the another which is more suitable to
their requirements. But it is a challenging task to identify
similar software artefacts from the existing large pool of
candidates. Therefore, much research effort has been put
into this domain. Different methods have been adopted to
mine similar artifacts ranging from high-level software [62],
[63], mobile applications [64], [65], github projects [66] to
low-level third-party libraries [13], [67], [68], APIs [69],
[70], [71], [72], code snippets [73], queries [74] or multi-
lingual descriptions [75], [76]. Compared with these research
studies, the mined software technologies in this work have
a much broader scope, including not only software-specific
artefacts, but also general software concepts (e.g., algorithm,
protocol), tools (e.g., IDE).

8.2 Extracting opinions about software technologies
Extracting opinions about technology preference is also
important to developers, as the opinions from other devel-
opers may provide a general vision especially for novice
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developers on the technology selection for their own tasks.
Uddin and Khomh [77] extract API opinion sentences in
different aspects to show developers’ sentiment to that API.
Ahasanuzzaman et al. [78] classify StackOverflow posts
concerning API issues-only with Conditional Random Field
(CRF) [79]. Lin et al. [80] produced a pattern-based approach
that can identify overall quality, pros, and cons of APIs.
Different from the works mentioned above, which focus
on only extracting opinion about one certain API or library,
our method tries to extract the comparison opinions of two
similar technologies.

8.3 Comparison in Software Engineering
Given a list of similar technologies, developers may fur-
ther compare and contrast them for a final selection. Some
researchers have investigated such comparison, where the
comparison is highly domain-specific such as software for
traffic simulation [81], x86 virtualization [82], etc. Michail
and Notkin [83] assess different third-party libraries by
matching similar components (such as classes and func-
tions) across similar libraries. However, these approaches
can only work for comparison without the possibility to
be extended to other technologies in Software Engineering.
Instead, we find developers’ preference of certain software
technologies highly depends on others’ usage experience
and report of similar technology comparisons. Li et al. [84]
adopt NLP methods to distill comparative user review
about similar mobile Apps. De et al [85] compare the
software libraries by a set of metrics. Different from their
works, we adopt a light-weight approach by extracting a
large pool of comparable technologies and corresponding
explicit comparison in natural-language sentences, rather
than heavy-weight program analysis. In addition, apart
from extracting comparative sentences, we further organize
them into different clusters and represent each cluster with
some keywords to help developers understand technology
comparison more easily.

Finally, it is worth mentioning some related practical
projects. SimilarWeb [86] is a website that provides users
engagement statistics and similar competitors for websites
and applications. AlternativeTo [87] is a social software rec-
ommendation website in which users can find alternatives
to a given software based on user recommendations. Sim-
ilarTech [88] is a site to recommend analogical third-party
libraries across different programming languages. These
websites can help users find similar or alternative websites
or software applications without detailed comparison.

9 CONCLUSION AND FUTURE WORK

We have presented an automatic approach to distill and
aggregate comparative opinions of comparable technologies
from Q&A websites. We first obtain a large pool of compa-
rable technologies by incorporating categorical knowledge
into word embedding of tags in Stack Overflow. We then
locate comparative sentences about these technologies by
coreference and POS-tag based pattern matching and or-
ganize comparative sentences into clusters for easier un-
derstanding. Finally, we summarize comparative sentences
to obtain an aggregated opinion for each pair of the com-
parable technologies. Based on the extracted comparative

opinions, we have constructed a proof-of-concept web site
using it for real developers. Our evaluation shows that
our system covers a large set of comparable technologies
and their corresponding comparative sentences with high
accuracy. Apart from Stack Overflow, our approach also
successfully runs on other Q&A sites like Super User and
Unix and Linux, indicating the generality of our approach.

In addition to comparative sentences explicitly men-
tioning both comparable technologies, some comparative
opinions may also appear in code fragments, tables or
figures. In the future, we will look to further improve our
tool for collecting more complete comparative opinions.
Therefore, we will improve our system to distill technology
comparison knowledge from the current sentence level to
whole-of-post levels.
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