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ABSTRACT
Approximately 50% of development resources are devoted to UI
development tasks [8]. Occupied a large proportion of development
resources, developing icons can be a time-consuming task, because
developers need to consider not only effective implementation
methods but also easy-to-understand descriptions. In this study,
we define 100 icon classes through an iterative open coding for
the existing icon design sharing website. Based on a deep learning
model and computer vision methods, we propose an approach to
automatically convert icon images to fonts with descriptive labels,
thereby reducing the laborious manual effort for developers and
facilitating UI development. We quantitatively evaluate the quality
of our method in the real world UI development environment and
demonstrate that our method offers developers accurate, efficient,
readable, and usable code for icon images, in terms of saving 65.2%
developing time.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in acces-
sibility.

KEYWORDS
code accessibility, icon design, neural networks

ACM Reference Format:
Sidong Feng, Suyu Ma, Jinzhong Yu, Chunyang Chen, Tingting Zhou,
and Yankun Zhen. 2021. Auto-Icon: An Automated Code Generation Tool for
Icon Designs Assisting in UI Development. In 26th International Conference
on Intelligent User Interfaces (IUI ’21), April 14–17, 2021, College Station, TX,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IUI ’21, April 14–17, 2021, College Station, TX, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8017-1/21/04. . . $15.00
https://doi.org/10.1145/3397481.3450671

USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3397481.
3450671

1 INTRODUCTION
An user interface (UI) consists of series of elements, such as text,
colors, images, widgets, etc. Designers are constantly focusing on
icons as they are highly functional in an user interface [9, 39, 41, 51].
One of the biggest benefits of icons is that they can be universal.
For instance, by adding a red “X” icon to your user interface design,
users are informed that clicking this icon leads to the closure of a
component. Furthermore, icons can make UIs look more engaging.
For example, instead of using basic bullets or drop-downs filled
with words, a themed group of icons can capture instant attention
from users. Consequently, icons become an elegant yet efficient
way to communicate with and help guide user through experience.

Despite of all these benefits, icons have two fundamental lim-
itations in the day-to-day development environment, in terms of
rendering speed and code accessibility. First, to ensure a smooth user
interaction, UI should be rendered in under 16ms [22, 23, 30], while
icon implemented as an image faces the slow rendering problem,
due to image download speed, image loading efficiency, etc. These
issues will directly affect the quality of the product and user experi-
ence, requiring more effort from developers to develop an advanced
method to overcome the problem. Second, in the process of UI
implementation, many developers directly import the icon image
resources from the UI draft files without considering the meaning of
the content, resulting in poor description/comment during coding.
Different codes render the same visual effect to users, while it is
different for developers to develop and maintain. A non-descriptive
code increases the complexity and effort required to developers as
they need to look at the associated location of the UI to understand
the meaning of the code.

This challenge motivates us to develop a proactive tool to address
the existing UI development limitations and improve the efficiency
and accessibility of code. Our tool, Auto-Icon, involves three main
features. First, to meet the requirement of efficient rendering, we
develop an automated technique to convert icon image to icon font,
which is a typeface font. Once the font is loaded, the icon will be
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rendered immediately without downloading the image resources,
thereby reducing HTTP requests and improving the rendering
speed. Icon font can further optimize the performance of rendering
by adopting HTML5 offline storage. Besides, icon font has other
potential attributes that can facilitate UI development, such as easy
to use (i.e., use the CSS’s @fontface attribute to load the font),
flexible (i.e., capable to change color, lossless scale), etc. Second,
understanding the meaning of icons is a challenging problem. There
are numerous types of icons in the UIs. Icons representing the same
meaning can have different styles and can be presented in different
scales as shown in Table 1. Also, icons are often not co-located with
texts explaining their meaning, making it difficult to understand
from the context. In order to offer an easy access for developers to
develop through understanding themeaning of icon, we collect 100k
icons from existing icon sharing website Alibaba Iconfont [2] - each
associating with a label described by designer. By analyzing the icon
images and labels, we construct 100 categories, such as "left", "pay",
"calendar", "house", etc. We then train a deep learning classification
model to predict the category of the icon as its description. The
experiments demonstrate that our model with the average accuracy
as 0.87 in an efficient classification speed as 17.48ms, outperforms
the other deep learning based models and computer vision based
methods. Third, to provide more accessibility to developers on the
description of icon images, we also detect the primary color of icons
by adopting HSV color space [66]. We refer to our mechanism tool
Auto-Icon to build an intelligent support for developers in the real
context of UI development, assisting developing standardized and
efficient code.

To demonstrate the usefulness of Auto-Icon, we carry out an
user study to show if our tool for automatically converting an icon
image to an icon font with label descriptions can help provide more
knowledge on code accessibility and accelerate UI development for
developers. After analyzing ten professional developers’ feedback
with all positive responses on our mechanism tool and we find that
the code for icon image generated by our tool can achieve better
readability compared with the code manually written by profes-
sional developers. Besides, Auto-Icon has been implemented and
deployed in Alibaba Imgcook platform. The results demonstrates
that our tool provides 84% usable code for icon images in a realis-
tic development situations. Our contributions can be summarized
below:

• We identify the fundamental limitations of existing UI de-
velopment of icon images. The informal interviews with
professional developers also confirm these issues qualita-
tively.

• Based on the emerging label categories, we develop deep-
learning and computer-vision based techniques, called Auto-
Icon, for specifically converting icon image to icon font with
label describing its meaning and color to provide developers
understand knowledge of code.

• We conduct large-scale experiments to evaluate the perfor-
mance of our tool Auto-Icon and shows that our tool achieves
good accuracy compared with baselines. The evaluation con-
ducted with developers and tested on the Imgcook platform
demonstrates the usefulness of our tool.

• We contribute to the IUI community by offering intelligent
support for developers to efficiently develop icon images
comply with code standardization.

2 RELATEDWORKS
2.1 UI Rendering
Ensuring fast rendering speed is an essential part in UI develop-
ment, since slow rendering creates poor user experience. Many
studies focus on improving rendering speed via reducing bugs [11,
36, 45, 47, 49, 57, 60, 70]. In contrast, we focus on analyzing image
displaying performance in UI rendering. There are a few related
works in this domain. For example, Systrace [4] is a tool that allows
developers to collect precise timing information about UI render-
ing on devices. However, it does not provide any suggestions for
improvement. To address this problem, many studies introduce
reliable approaches to improve rendering efficiency such as image
resizing based on pattern-based analysis [48], a manual image re-
source management based on resource leakage analysis [72]. Gao et
al. [29] implement a system called DRAW which aims to reveal UI
performance problems in an application such as excessive overdraw
and slow image components detection. With the suggestion of the
image displaying performance analysis by DRAW, developers can
manually improve the rendering performance of slow image dis-
playing. While these works offer image management suggestions to
developers to achieve better rendering performance, they still need
to be improved manually. In contrast, we propose an image conver-
sion technology based on computer vision and graphic algorithms
to convert icon images into font types in order to automatically
improve the performance of UI rendering.

2.2 Code Accessibility
Digital devices such as computer, mobile phone and tablets are
widely used. To ensure the quality of software, many research
works have been conducted [10, 28, 34]. Most of these works fo-
cus on the functionality and usability of apps such as GUI de-
sign [13, 15, 16, 74], GUI animation linting [78], localization [68],
privacy and security [17, 18, 20, 25, 76], performance [47, 79], and
energy-efficiency [6, 7]. Few researchworks are related to accessibil-
ity issues. Some works in Human-Computer Interaction area have
explored the accessibility issues of mobile apps [14, 40, 54, 67, 75].
In these work, the lack of description in image-based components
in UI is commonly regarded as an important accessibility issue.
For instance, Harrison et al. [32] establish an initial ‘kineticon vo-
cabulary’ containing a set of 39 kinetic behaviors for icon images,
such as spin, bounce, running, etc. Ross et al. [61] identify some
common labeling issues in Android apps via analyzing the icon
image labeling. With crowd source method, Zhang et al [77] an-
notate GUI elements without content description. However, these
works are mainly based on the support from developers. Due to
the increasingly developed Convolutional Neural Networks (CNNs)
technologies, dramatic advances appears in the field of image classi-
fication which is applied to automatically annotate tags for images.
Chen et al. [12] analyze the tags associated with the whole GUI
artwork collected from Dribbble, and emerge an vocabulary that
summarizes the relationship between the tags. Based on the vocab-
ulary, they adopt a classification model to recommend the general
tags in the GUI, such as "sport", "food", etc. Different from their work,
we predict more fine-grained categories, such as "football", "burger",
etc. And also, they focus on predicting the categories of the whole
UI which is subjective to human perception, but the categories of
small icon images are usually more intuitive. A similar work to
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ours is the icon sensitive classification by Xiao et al [73]. They
utilize traditional computer vision techniques like SIFT and FAST
to extract the features of icon and classify icons into 8 categories
through calculating their similarity. After the systematically inves-
tigation of icon images, we discover the fundamental limitations
in icon images discussed in Section 4.1, in terms of high cross-class
similarity and small, transparent and low contrast. These findings
conflict with methods applied in their paper such as apply rotation
to augment dataset. Moreover, we show that deep learning model
is fruitful for the icon classification problem than the tradition com-
puter vision technique in Section 5.1.3. In our work, according to
the characteristic of icon images, we propose a deep learning model
to automatically classify icons in a more fine-grained (100) category
and also adopt a computer vision technique to detect its primary
color.

3 PRELIMINARY STUDY
To better understand the challenges in the real-world UI develop-
ment environment, we conducted an interview with 12 front-end
developers from the big companies. Two authors first developed
the interview protocol, and conducted pilot studies with two partic-
ipants. Based on the pilot studies, we refined the interview protocol
and conducted 10 interviews formally. The average length of these
interviews is 20 minutes. We started with general questions, such
as questions about working years, workload of development, and
number of projects developed. Then, we asked the interviewees
how they developed the code for icon images. We particularly asked
what motivated them to adopt the approach, whether they revised
the implementation, what approaches could achieve the same effect,
what they perceived as the impact of the implementation, how the
implementation behaved in the process of development and is there
any difference on UI development between personal projects and
company tasks.

3.1 Research Question 1: do developers
implement icon images in font or images?

By summarising the approaches, we collected 4 ways of rendering
icon images, i.e., image tag <img> or <svg>, icon tag <i>, css back-
ground image, and custom tag <SvgIcon> as shown in Table 3. One
third of our developers listed all approaches, 80% developers knew
the way of using image and font. There are 2 developers who have
never heard of or used the fonts to render icon images, D2 said:

Making front-end development is fun, although sometimes it hurts
because I do not have adequate learning experience. There are few
front-end courses in universities, and these courses usually contain
relatively simple knowledge, such as what is <div> block, how to
connect HTML and CSS together, etc. They do not teach the usage of
font, especially they do not distinguish the difference between fonts
and images in rendering icons.

70% developers implemented icons as image when developing
front-end codes based on UI design draft files because they found
that converting icon to font is a complicated and laborious process.
For example, D7 mentioned:

To implement the approach of icon font, I first need to upload the
image to the existing conversion websites such as icomoon [38] and
Fontello [26]. Then, I need to download the generated icon font to my

local device. Last but not least, I need to copy the generated CSS code
to CSS files. This entire process requires a lot of time and effort, but
due to time constraints, the process is not compatible in industry.

One developer D2 from Alibaba described how limit the time in
their UI development:

Every year, Alibaba has more than 240 events which stores of-
fer special discount, such as Double 11 Global Delight Event, Tmall
Thanksgiving Day Event, 1212 Global Discount Event, etc. Due to the
high demand for the UI development in the duration of events, we are
required to implement UIs in 3 or 4 days.

Developers also considered the trade-off between UI perfor-
mance and its value. Since the usage of icon font does not provide
business value, it is often in a low priority in industry. Even if they
knew the benefit of using font, they would not put effort in doing
this. For instance, D9 explained:

Although I know the icon font is better compared to icon image, I
will not apply this approach in development. I usually have 3 tasks
in a week, such as UI implementation, bug testing, algorithm im-
plementation, etc. I agree that icon font can improve UI rendering
performance and provide better user experience. But, the overall func-
tionality will still work without icon font. In contrast, without bug
testing, the front-end codes may not work, resulting in significantly
impact on the company business. And if I do not implement the al-
gorithm, other developers will not be able to apply the API in their
development, which will slow down the development speed and delay
the product release time.

Another example shows the potential gap between industry and
individual is that 50% developers mentioned that they use font to
render icon image when developing their personal projects, such
as homepage, blog, tutorial, etc. For example, D2 said,

When I developed my first personal website, I discovered Font Awe-
some [27], a font toolkit to render icons by simply adding class de-
scription. Since this is my website, I can design freely according to my
preferences. To quickly develop my website, I used the font in Font
Awesome to implement all the icon images in my website. However, it
is not applicable in industry. In industry, every icon is well designed
according to the company culture and design specifications. Therefore,
it is not suitable to apply widely used icon font resources from online
platforms. In addition, using online icon fonts involves intellectual
property (IP) issues which must be avoided in the industry.

Despite most of the developers know the benefits of
using font to render icons, few of them implement
font in practice. The icon they used is distinct to the
online resources as it comprises company culture and
design guidelines. Therefore, rather than directly us-
ing the online resources, developers have to spend
extra effort in converting icon images to font, which
is time-consuming and laborious.

3.2 Research Question 2: do developers write
descriptions for icon images?

All of them mentioned that they did write descriptions/comments
in their personal projects, such as assignments, homepage, etc.
However, half of developers did not write descriptions in practice
due to the following practical reasons. First, since the readability
of code is not a mandatory requirement, many developers did not
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write well-formatted descriptions for code. For example, the code
in the industry cannot be released as open-source. As D9 said that
"Since our code can not be released to public, I would not spend too
much time on writing comments in code because only a few internal
developers would collaborate onmy tasks." In addition, since updating
iteration in the industry is fast, it is not worth to put too much
effort in commenting, especially for icons. For example, D10 said,
In the year of 2019, our company developed over 1 million UIs. Due to
the diversity of UIs, few designs are re-implemented and few code are
reviewed. Because of the fast updating iteration and low reusing rate,
I did not write well-formatted comment, particularly for the images.
I was developing a shopping application which images cover more
than half of the UIs. To develop the large amount of images quickly, I
prefer using <img> tag without any alternative description.

Second, 80% developers mentioned that writing a well under-
stood description is a challenging task. It requires developers to
understand the intention of the icons, while few developers pay
attention to the content of the UIs. For example, D7 explained,

I agree that the clear descriptions in the code can keep the code
readable and “save lives”, while unreasonable descriptions “kill lives”.
However, it is hard to write a good description. Here is the process of
how I write the descriptions: Firstly, I design a comment for every com-
ponent, image, ..., based on its characteristic. Secondly, I rename and
simplify the comments according to practical requirement. Thirdly,
I check if the comments match the content of UIs or not. Then I re-
peat this process until the deadline. And obviously, the process is
time-consuming and not applicable in the industry.

Despite the insufficient descriptions in the code may not impede
professional developers, it creates a significant cognitive burden
for interns and new developers. For example, D3 said,

I am a junior student who came to the company for internship. The
first task assigned to me by my leader was to understand the code.
However, I found that most of the code is uncommented, which makes
it very difficult for me to understand. To understand this part of code,
I asked more than 5 developers who participated this project. These
uncommented codes negatively influenced my work.

Developers rarely write descriptions for images, espe-
cially for icons, because the loose restriction on code
readability makes developers less cared about code
descriptions. Most of developers agree with difficulty
on designing simple, concise and easy-understood de-
scriptions. The lack of description can adversely affect
novice employees and lead to inadequate understand-
ing of the code.

4 APPROACH
Numerous online icon design sharing websites such as Font Awe-
some [27], Google Material Design Icons [31], provide comprehen-
sive icon library to assist designers and developers in designing and
coding. In these online icon websites, each label matches only one
icon. While in real case, one label may have several different de-
signs, revealing the limited diversity of these websites. In this work,
we select Alibaba Iconfont website [2] as our study subject - not
only because it has gained significant popularity among designers’
community, but also due to it has became repositories of knowledge
with millions of diverse icon designs created by designers.

To collect icon images and associated labels, we built a web
crawler based on the Breadth-First search strategy [55] i.e., col-
lecting a queue of URLs from a seed list, and putting the queue as
the seed in the second stage while iterating. The crawling process
continued from December 12, 2019 to July 1, 2020 with a collection
of 100k graphical icon images. We first carried out an empirical
study of collaborative icon labelling in Alibaba Iconfont to under-
stand its characteristics for motivating the required tool support
(Section 4.1). To solve RQ1, we proposed an automated convertion
technique, taking an icon image as the input, and outputting a
vector graphics font(Section 4.2). Then, to address RQ2, we got
inspired from the findings in our empirical study to develop a deep
learning model to automatically assign the classes of icons in order
to reduce the effort of manually designing the description of icons
(Section 4.3). Additionally, we applied a primary color detection
method based on computer vision to keep track of the primary color
of the icon image in order to support more detailed description in
code (Section 4.4).

4.1 Empirical Study
During the process of open coding the categories of icons semantic,
we find that one label can be written in different styles. For example,
the label "crop" can be written in not only its standard format,
but also its derivations synonyms like "prune", "clip", "crop-tool".
Moreover, due to the icon image labelling process in Iconfont is
informal and icon designs are contributed by thousands of designers
with very diverse technical and linguistic backgrounds the same
concept may labeled in many user defined terms such as "crop-fill",
"crop-portrait", "icon-crop-solid-24px". The wide presence of forms
poses a serious challenge to icon classification task. For example,
the icon can be described to the class of "crop" or "clip", which
makes sense in both classes.

To address the problem, we adopted association rule mining [1]
to discover label correlations from label co-occurrences in icons. We
leveraged the visual information from the icon images and textual
information from the labels to group a pair-wise correlation of
labels. For measuring the visual similarity, we adopted the image
similarity score MSE [71] simvis(x,y) to calculate the likelihood
if two icons are the same. For measuring the textual information,
we first trained a word embedding [53] model to convert each
label into a vector that encodes its semantic. Then we defined a
lexical similarity threshold based on the string edit distance [44]
simtext (x,y) to check if two labels are similar enough in the form.
The labels are grouped as a pair-wise correlation if simvis(x,y) ≥ 0.9
or simtext (x,y) ≥ 0.9. As we wanted to discover the semantics and
construct a lexicon of categories, we found frequent pairs of labels. A
pair of labels is frequent if the percentage of how many icon images
are labelled with this pair of tags compared with all the images
is above the minimum support threshold tsup ≥ 0.001. Given a
frequent pair of labels {t1, t2}, association rule mining generated
an association rule t1 ⇒ t2 if the confidence of the rule tconf ≥ 0.2.
Given the mined association rules, we constructed an undirected
graph G(V ,E), where the node set V contains the labels appearing
in the association rules, and the edge set E contains undirected
edges < t1, t2 > (i.e., pair of label associations) if the two labels
have the association t1 ⇒ t2 or t2 ⇒ t1. Note that the graph is
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Table 1: The 40 icon classes identified through an iterative open coding of 100k icons from the Iconfont [2].

CLASS ASSOCIATED LABEL EXAMPLES NUMBER

add plus, addition, increase, expand, create 357
calendar date, event, time, planning 324
camera photo, take-photo 355
chat chat-bubble, message, request, comment 372
complete finish, confirm, tick, check, ok, done 432
computer laptop, device, computer-response, desktop 521
crop prune, crop-tool, shear, clipper crop-portrait 436
download file-download, save, import, cloud 444
edit editing, handwriting, pencil, pen, edit-fill, modify 546
emoji amojee, sad, happy, emotion 374
envelope letter, email, mail, inbox 332
exit quit, close, switch-off, logout 404
flower flowers, flower pot, sunflower, valentine-flower 377
gift present, reward, surprise 340
house home, rent, house-area, house asset, building, mall 378
left return, back, prev, backwards 531
like thumb-up, heart, vote, hand-like, upvote, dislike, favourite 386
location gps, direction, compass, navigation 543
menu menu file, card, menufold, menu-line, more, dashboard 351
minus remove, minus (with circle), minus-sign 556
music music-note, music-library, musical-instrument 375
news newspaper, info, announcement 423
package package-up, package-sent, handpackage, personal package 362
pay money, wallet, dollar, commerce 364
person user, avatar, account, customer 562
photo image, picture, camera 481
play playicon, broadcast, play voice, play button, play arrow 498
question ask, faq, information, help, info, support 350
refresh reload, sync, reset, recreate 321
right forward, next, go, arrow-forward 412
safe safe box, safety, safety certificate, lock, secure 476
search investigate, search-engine, magnifier, find, glass 377
send send-arrow, paper-plane, message 318
settings toolbox, gear, preferences, options 317
shopping cart, shopping-bag, checkout 472
signal signal-tower, wave, radio, broadcast 548
sound speaker, sound volume, player 415
star collection, rate, favourite 424
switch switch-on/off, switcher, open, close 319
text word, textbox, font, size 446
visibility visible, show, hide, visibility-off, in-sight 339
warn alarm, warning, error, report, alert 369
wifi wi-fi, wireless, network, signal 429
zoom-in fullscreen, expand, adjust, magnifier 384

undirected because association rules indicate only the correlations
between antecedent and consequent. All threshold values were
carefully selected through manually check, considering the balance
between the information coverage and overload.

To identify the set of frequently occurred icon label categories,
we performed an iterative open coding ofmost frequent co-occurring
labels (or approximately 9.2% of the dataset 542,334 in total) with

existing expert lexicon of categories in books and websites such
as Google’s Material icon set [31], IBM’s Design Language of Iconog-
raphy [37] and Design Pattern Gallery [56]. Two researchers from
our team independently coded the categories of these labels, not-
ing any part of the initial vocabulary. Note that both researchers
have design experiences in both icon images and UI development.
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After the initial coding, the researchers met and discussed the dis-
crepancies and the set of new label categories until consensus was
reached. A semantic icon categories can be seen in Table 1. We
observed two distinct characteristics in icon images compared to
the physical-world objects.

High cross-class similarity: Icon images of different classes
often have similar size, shape and visual features. The visual dif-
ferences to distinguish different classes of icons can be subtle, par-
ticularly small widgets are differentiated by small visual cues. For
example, the difference between "newspaper" and “file" lies in a text
of news at the top/bottom side of "newspaper", while a plus/minus
symbol distinguishes "zoom in"/"zoom out" from "search". In addi-
tion, direction is also an important aspect to distinguish classes.
For example, the inclined waves represent "signal" and the upward
waves represent "wifi". Existing object classification tasks usually
deal with physical objects with distinct features across classes, for
example, fishes, flowers, hockey and people in the popular Ima-
geNet dataset [21]. High cross-class similarity affects classification
as the class can be not easily distinguished.

Small, transparent and low contrast: To make UI unique and
stylish in the screen, icons are usually small and partially trans-
parent, such as the last icon image in the "minus" class shown in
Table 1. The transparent icons in the UIs do not cause vision conflict,
while they are less visible when separated from the background
context. For example, the first icon in the "text" class in Table 1 is
an icon with low color contrast and uses transparency and shadow
to stress contrast. While the contrast of the object is obvious in the
current dataset, especially apparent in the greyscale format such as
MNIST dataset [43].

Existing icon sharing sites contain a wide presence
of forms of labeling. Based on different background
knowledge, designers use different same-meaning la-
bels to annotate the same icon. Such limitation not
only confirms our finding of difficulty of commenting
in Section 3.2, but also hinders the potential challenge
in classification task. Therefore, a data mining ap-
proach capturing visual and textual information is
applied to construct a lexicon in icons. By observing
the lexicon, we find that two distinct characteristics
of icon different from the existing physical object ori-
entated dataset.

4.2 Font Convertion from Icon Image
Unlike converting font to image, transcribing image to font, which
is also known as image tracing problem, is a difficult task. In this
work, we adopted the state-of-the-art Potrace [64] in Figure 1A. We
first applied a pre-processing method for converting color to binary
(i.e., black and white) image by setting a threshold to control the bit
of each pixel after calculating the average value in three channels
(R+G +B)/3. We regarded the pixel is of white if the average value
is larger than 128, while black if the value is equal to or smaller than
128. Then, we detected the edge in the black-white image. An edge
is defined to be a border between a white pixel and a black pixel,
which indicate which pixels from the original image constitute the
borders of region. Note that the edge is assigned a direction so that
when moving from the first endpoint to the second, the black pixel

is on the left (as shown in Figure 1A edge detection). This process
was repeated until we reached the starting point, at which point
we have found a closed path which encloses a black region. Once
the border was found, we approximated/optimized the border with
a polygon to figure out which border pixels is possible to connect
with a straight line such that the line passes through all the border
pixels between its endpoints. To detect the optimal polygon, we
computed a penalty value to measure the average distance from the
edge to the pixels it approximates. The polygon with the smallest
penalty (equivalent to the polygon with the fewest pixels) is the
optimal one. Finally, we used a cubic curve defined by four control
points (also known as Bezier curve [63]) to smooth the corners. The
first and fourth control points (i.e., midpoints of the edges of the
polygon) give the locations of the two endpoints of the curve, while
the second and third (i.e., chosen on the polygon edges through the
endpoints) indicate the direction and magnitude of the derivative
of the curve at each endpoint.

4.3 Prediction for Icon Image
Traditional Convolutional Nerual Network (CNN) [42, 43] has
shown great potential as a solution for difficult vision problems.
MobileNetV2 [62] distills the best practices in convolutional net-
work design into a simple architecture that can serve as competitive
performance but keep low parameters and mathematical operations
to reduce computational power. The architecture of the network is
shown in Figure 1B.

Instead of using regular convolutional layers widely used in tra-
ditional CNN architectures to capture essential information from
images but are expensive to compute, MobileNetV2 adopted a more
advanced one, depthwise separable convolutions. Depthwise sep-
arable convolution combined a 3 ∗ 3 convolution layer and two
1 ∗ 1 convolution layers. The 1 ∗ 1 convolution layer (also named
as pointwise convolution layer) was used to combine the filter val-
ues into new features, while the 3 ∗ 3 convolution (also called as
depthwise convolution layer) was used to filter the input feature
map. Inspired from the dimension augmentation in the work of [46],
MobileNetV2 used a 1 ∗ 1 pointwise convolution layer to expand
the number of channels in the input feature map. Then it used a
3 ∗ 3 depthwise convolution layer to filter the input feature map
and a 1 ∗ 1 convolution layer to reduce the number of channels of
feature map. The network borrowed the idea of residual connec-
tion in ResNet [33] to help with the flow of gradients. In addition,
batch normalization and activation layer were added between each
depthwise convolution layer and pointwise convolution layer to
make the network more stable during training. For detailed imple-
mentation, we adopted the stride of 2 in the depthwise convolution
layer to downsample the feature map. For the first two activation
layers, the network used ReLU6 defined as y = min(max(0,x), 6)
because of its robustness in low-precision computation [35], and a
linear transformation (also known as Linear Bottleneck Layer) was
applied to the last activation layer to prevent ReLU from destroying
features.

4.4 Color Detection of Icon Image
Since the convertion between icon image and font sacrifices the
color identity, we added an attribute to keep track of the primary
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Figure 1: The approach of our tool, Auto-Icon, involving font convertion, prediction and color detection.

color of the icon image. To that end, we adopted HSV colorspace
for color detection. We first removed the fourth alpha channel
as transparent and made a conversion from RGB color to HSV
colorspace. Each RGB color has a range of HSV vale. The lower
range is the minimum shade of the color that will be detected, and
the upper range is the maximum shade. For example, blue is in
the range of ⟨100, 43, 46⟩–⟨124, 255, 255⟩. Then, we created a mask
for each color (black, blue, cyan, green, lime, megenta, red, white)
as shown in Fig. 1C. The mask is the areas that HSV value on
pixels match the color between the lower range and upper range.
Finally, we calculated the area of the mask in each color and the
corresponding image occupancy ratio. The color with the maximum
ratio was identified as the primary color of the icon image (the blue
in the example in Fig. 1C).

5 EXPERIMENTS
In this section, we first set up an experiment to analyze the per-
formance of our model in Section 4.3. Then we conduct a pilot
user study to evaluate the usefulness of our tool. Furthermore, we
demonstrate its usefulness on a large-scale industrial benchmark.
The goal of our experiments is to answer the following research
questions, in terms of accuracy, efficiency and applicability. RQ 1:
how accurate is our model in predicting labels for icon images? RQ 2:
how much do our tool increase the efficiency of UI development? RQ
3: what are the developers’ opinions on the usability of our tool?

5.1 Icon Prediction
5.1.1 Dataset: We leveraged the categorization during the creation
of the semantic vocabulary (in Table 1), and corresponding icon im-
ages and attached labels as the training data. The foundation of the

deep learning model is the big data, so we only selected categories
with frequency larger than 300 for training the model. Therefore,
there are 100 categories left with the number of icon images ranging
from 311 to 589. Given all the data assigned to each label, we ran-
domly split these 41k icon images into train/validation/test dataset
with a ratio of 8:1:1 (33K:4K:4k).

5.1.2 Baselines: We set up several basic machine-learning base-
lines including the feature extraction (e.g., color histogram [69],
scale-invariant feature transform [50]) with machine-learning clas-
sifiers (e.g., decision tree [59], SVM [19]). Apart from these con-
ventional machine learning based baselines, we also set up several
derivations of state-of-the-art deep learning models as baselines to
test the importance of different inputs of our approach including
backbones (ResNet [33], VGG [65], MobileNet [62]), different input
channels (RGB, RGBA). The training and testing configurations for
these baselines were the same.

5.1.3 Results: As we trained a classifier to predict label for icon im-
age, we adopted the accuracy as the evaluation metric for the model,
illustrated in Table 2. The traditional machine learning method
based on the human-crafted features can only achieve about 0.6
average accuracy. Deep learning models perform much better than
the best old fashioned methods, i.e., with the 0.3033, 0.29712, 0.2958
increase for ResNet-50, VGG-16, and MobileNetV2 respectively.
Although ResNet model performs the best in icon image classifica-
tion task, it requires relatively long time for prediction (26.535ms
per icon) which strongly violates the performance of UI rendering
(16ms). In contrast, our model MobileNet is nearly as accurate as
ResNet with a performance lag of 0.67%, while being 34.1% faster.
And also, we find that the increase of a fourth alpha channel (RGBA)
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Histo Histo SIFT SIFT MobileNetV2 MobileNetV2
Method +SVM +DT +SVM +DT ResNet-50 VGG-16 (RGBA) (RGB)

Accuracy 0.5657 0.3267 0.5806 0.4686 0.8839 0.8764 0.8348 0.8772
Time (ms) 0.103 0.152 1.702 1.941 26.535 27.282 17.567 17.485

Table 2: Label classification accuracy and time estimation in different methods.

decreases the accuracy from 0.8772 to 0.8348, due to two main rea-
sons. First, the result shows that the model with RGB input has a
loss value of 0.7844 at epoch 200, which is better than the model
with RGBA (0.9231). This is because the supplemented channel
greatly increases the parameters of the model, which leads to a de-
cline in the ability of gradient training at the same epochs. Second,
based on the principle of optics, the fourth alpha channel does not
reflect the morphological characteristics of the image. It is used
to reduce information of other three channels by adjusting their
color/degree, causing less information captured through training
process.

5.2 User Study
5.2.1 Procedures for User Study. 10 developers, all proficient in UI
development and have at least 1-year experience, were recruited
for this study. We randomly selected five icon images from the
real-life UI designs and asked each participant to develop them. To
guarantee the participants can objectively develop the icons, we
asked whether they have prior knowledge on the icon images (such
as development experience, design experience, etc.). The time of
the development were recorded. To be fair, participants did not
know we were recording the time as the time pressure may affect
their development (in quality, speed, etc.) [5, 52]. We set the manual
development as the control group. Then, we also asked them to
develop five other icon images with the help of our tool which
not only automatically convert the image to icon font, but also
provide the description (predicted label and color). We called this
the experimental group. The detailed developments of two groups
for icon images are shown in Table 3.

We then recruited another 10 developers, and each of them was
assigned the developments from two control groups and one ex-
perimental group. Note that they did not know which one if from
the experimental or control group, and for each icon image, we
randomly shuffled the order of candidates to avoid potential bias.
Given each development, they individually marked it as readable
or not in five-point likert scale (1:not readable at all and 5:strongly
readable). To evaluate the performance of usability, we also asked
participants to rate how likely they would like to use the develop-
ment in practice (Acceptable). The measurement is also in five-point
scale.

5.2.2 Results: Box plot in Figure 2 shows that the time spent on
the development of icon images in the experimental group is much
shorter than that in the control group (with an average of 6.05s
versus 17.39s, saving 65.2% of time). That is the biggest strength
of our tool i.e., developers can quickly develop an icon image by
providing descriptions and a font pattern. On average, the overall
readability ratings for the experiment group is 4.16, which are
significantly higher (48.5%) than the control group (2.8) in Figure 2.

Most developers admit that our tool can provide more acceptable
results for them. In other words, 94% (4.7/5.0) of developers hope
to develop the icon images with the help of our tool in their real
development environment compared to 3.96 in the control group.
To understand the significance of the differences, we carry out the
Mann-Whitney U test [24] (specifically designed for small samples)
on the readability and acceptability ratings between the experiment
and the control group respectively. The test results suggest that
our tool does significantly outperform the baseline in term of these
metrics with p < 0.01 or p < 0.05.

For some icons, the developer gives very low acceptability score
to the labels. According to our observation and further survey, we
summarise two reasons accounting for those bad cases. (1) Albeit
the good performance of our model, we still make wrong predic-
tions for serendipitous icons. Based on the context of icon image,
the same icon can have different meaning. For example, the icon
image in Figure 3 represents the meaning of "information" in the
common case, but consider the text on the right, the meaning of the
icon image should be "glossary"/"dictionary". (2) Developers admit
the usefulness of converting images to font for providing faster
rendering speed. However, they also point out the limitation of re-
placing image with font. Font is not fully compatible in all browsers
and devices. One developer mentioned that they need to make sure
that the development works on old devices, in which they usually
need to give up latest efficient methods, such as iconfont.

5.3 Industrial Usage
We cooperate our tool with the Imgcook platform[3] developed
by Alibaba, an intelligent tool to automatically generate front-end
codes from UI design files. Imgcook has attracted a lot of attention
in the community which has a large user base (15k) and generates
over 40k UIs. Auto-Icon is integrated with the internal automated
code generation process and is triggered whenever the design files
contain an icon.

In order to evaluate the usability of our tool, we set up a code
review metric for measuring the code modification for icon images.
Note that the code modification contains multiple contents, such as
text, button, etc, we only measure the modification if the object is
icon to reduce the potential bias. We adopt a case-insensitive BLEU
(BiLingual Evaluation Understudy) [58] as the metric to evaluate
the preservation of code. BLEU is an automatic evaluation metric
widely used in code difference studies. It calculates the similarity
of machine-generated code and human-modified reference code
(i.e., ground truth) as BLEU = BP ∗ exp(

∑n=1
N wnloдpn ) where pn

denotes the precision, i.e., the ratio of length n token sequences
generated by our method are also present in the ground-truth;wn
denotes the weight of different length of n-gram summing to one;
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Table 3. Examples of development for icon images in Experimental and Control groups.

E <i class="icon-left red"></i>

C1 <img src="8E431911-61BB-4A19-8C01.svg"/>

C2 <img src="next-icon-design.svg" alt="next" width="100%"/>

C3 <div style="background-image: url(’8E431911-61BB-4A19-
8C01.svg’);"></div>

E <i class="icon-information white"></i>

C1
<svg class="icon" aria-hidden="true">

<use xlink:url="icon-information"></use>
</svg>

C2 <a style="background-image: url(’q&a.svg’); width: 100%;
height:100%;" class="help-icon"></a>

C3 <a class="svg-icon-info" href="#"><SvgIcon name="white"></a>

Fig. 2. The comparison of Experimental and Control groups. ∗denotes 𝑝 < 0.01,
∗∗denotes 𝑝 < 0.05.

Fig. 3. The icon description varies by
context.
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BP is 1 if c > r, otherwise e(1−r/c) where c is the length of machine-
generated sequences and r is the length of ground-truth. A high
BLEU score indicates less modification in the code review.

We run the experiment in Imgcook with 6,844 icons in 2,031 UIs
from August 20, 2020 to September 20, 2020. Among all the testing
UI developments, the generated code for icon image reaches 84%
BLEU score, which means that most of the code is used directly
without any modification. It demonstrates the high usability of
Auto-Icon in practice. Based on the inspection results, we categorize
the modification into four categories. Two reasons are discussed
in the Section 5.2.2, in terms of wrong prediction and compatibil-
ity concern. There are another two modifications mainly due to
industrial practice. First, in order to maintain the consistency of
company’s coding experience, some developers modify to a pre-
scribed naming/rendering method, for example, packing the icon
of "icon-camera" to a <Icon-Camera> tag. Second, UI dynamically
changes in practice. Once an element in the UI is changed, the
attribute of icon may change, such as color and font size.

Overall, our method achieves 87.7% accuracy in the
label prediction for icon images (RQ1). In the survey
of 10 developers, we improve the efficiency of devel-
oping time and code readability by 65.2% and 48.5%,

respectively (RQ2). The majority (4.7/5.0) of the inter-
viewed developers acknowledges the usability of the
generated code for icon image by our method, and it
is further confirmed in the practice of Imgcook with
84% BLEU score (RQ3).

6 DISCUSSION
On developers: Developing icon images in the UIs is a challenging
and time-consuming task, even for professional developers. On the
one hand, UI developers must enhance performance. Poor devel-
opment has an adverse effect on the performance of the site. The
performance issues comprise a multitude of factors like rendering
speed, reusability & flow of the code, etc. On the other hand, UI
developers must write a clean, high quality code which can be eas-
ily understood and maintained. Inspired by the high performance
of font rendering, our work designs an automated method to con-
vert icon image to icon font using computer vision techniques to
trace the edge of icon and using graphic algorithm to optimize the
edge. In addition, compared with the missing descriptions in the
development or brainstorming suitable names which is limited to
several developers in the physical world, our deep learning and
computer vision techniques based method can quickly identify the
label and the color of icon image. Our method once made accessible
to developers, can very well help developers achieve efficient icon
image coding.

On the generalization of our method: We report and ana-
lyze the performance of our CNN-based model for predicting icon
image labels in Section 5.1.3. One limitation with our model is
that we currently only test our model on 100 labels with enough
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corresponding icon images. With the cooperation with Imgcook
platform, the icons in the UI images are a gold resource. First, the
icon images are relatively unique, otherwise, developers can reuse
the online resources directly. These unique icon images can sig-
nificantly increase the amount of data, consequently improving
the accuracy of our model. Second, developers may modify the
description to a serendipitous label which can augment the labels
and generalize a broader range of icon descriptions. Due to the
time limit, we only collect a small amount of icon images from
Imgcook. However, we have seen some interesting icon images that
do not exists on online sharing platforms and they may improve
the generalization of our method.

Area of improvements: Currently, we only predict the label
based on icon itself. As discussed in Section 5.2.2, the meaning of
icon image varies in different context. To address this problem, we
can consider the entire UI, capturing all the related information
to make the final prediction. Developers praise the idea of adding
descriptions to the code which is a tedious task for them. They
wonder whether our model can extend to other elements. An devel-
oper hope us to support description for buttons as he finds many
buttons do not have descriptive texts to explain its intention, re-
sulting in a bad user experience. We believe our model could help
developers in this case as it will not be difficult to extend to other
elements once we obtain enough data for the training. Moreover,
developers envision the high potential in being able to add icon size
descriptions as one of the biggest strength of icon font is lossless
scalability. To that end, we can measure the height of the icon and
map it to the corresponding font size.

7 CONCLUSION
In this paper, we present a deep-learning and computer vision
approach that can provide developers with intelligent support to
reduce the development time of icon design in the UI. The core
techniques are three-fold. First, we develop an automated image
convertion method to turn an icon image into a font in which im-
proving UI rendering speed. Second, to assist developers with better
code accessibility, we adopt a deep learning model to automatically
predict the descriptive label that convey the semantics of the icon
image. Third, according the colorspace of the image, we detect the
primary color of the icon to provide developers more knowledge
on the image. Our method is incorporated into existing automated
code generation platform to extend them beyond effective and
descriptive coding.
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