
33

Data-Driven Proactive Policy Assurance of PostQuality in
Community Q&A Sites

CHUNYANG CHEN,Monash University, Australia
XI CHEN, JIAMOU SUN, and ZHENCHANG XING, Australian National University, Australia
GUOQIANG LI, Shanghai Jiao Tong University, China

To ensure the post quality, Q&A sites usually develop a list of quality assurance guidelines for “dos and
don’ts”, and adopt the collaborative editing mechanism to fix violations of community norms. Guidelines
are mostly high-level principles, and many tacit and context-sensitive aspects of the expected community
norms cannot be easily enforced by a set of explicit rules. Collaborative editing is a reactive mechanism after
low-quality posts have been posted. Our study of collaborative editing data on Stack Overflow suggests that
tacit and context-sensitive norm-meeting knowledge is manifested in the editing patterns of large numbers of
collaborative edits. Inspired by this observation, we develop and evaluate a Convolutional Neural Network
based approach to learn mid-level editing patterns from historical post edits for predicting the need of editing
a post. Our approach provides a proactive policy assurance mechanism that warns users potential issues in a
post before it is posted.

CCS Concepts: • Applied computing → Text editing; • Human-centered computing → Collaborative
and social computing;

Additional Key Words and Phrases: Q&A Sites; Quality assurance; Deep learning; Collaborative editing

ACM Reference Format:
Chunyang Chen, Xi Chen, Jiamou Sun, Zhenchang Xing, and Guoqiang Li. 2018. Data-Driven Proactive Policy
Assurance of Post Quality in Community Q&A Sites. Proc. ACM Hum.-Comput. Interact. 2, CSCW, Article 33
(November 2018), 22 pages. https://doi.org/10.1145/3274302

1 INTRODUCTION
Online question and answer (Q&A) sites are platforms for participants to ask and answer questions.
Recent years has witnessed the popularity of both the general Q&A sites like Quora1 and domain-
specific Q&A sites like Stack Overflow2. As time flows, these Q&A sites have accumulated a large
pool of valuable knowledge which serves millions of users around the world. However, the dramatic
growth of posts and users on a Q&A site poses a severe challenge to the quality assurance of the
site. For example, some less experienced users may post questions and answers with misspellings,

1https://www.quora.com/
2https://stackoverflow.com/

Authors’ addresses: Chunyang Chen, Faculty of Information Technology, Monash University, Melbourne, Australia,
chunyang.chen@monash.edu; Xi Chen; Jiamou Sun; Zhenchang Xing, Research School of Computer Science, Australian
National University, Canberra, Australia, *Xi Chen and Jiamou Sun contribute equally, u6013686@anu.edu.au,u5871153@
anu.edu.au,zhenchang.xing@anu.edu.au; Guoqiang Li, corresponding author, School of Software, Shanghai Jiao Tong
University, Shanghai, China, li.g@sjtu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
2573-0142/2018/11-ART33 $15.00
https://doi.org/10.1145/3274302

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

https://doi.org/10.1145/3274302
https://www.quora.com/
https://stackoverflow.com/
https://doi.org/10.1145/3274302

33:2 C. Chen et al.

grammar errors, inappropriate code and text formatting, and the lack of important information
(e.g., data visualization images, URLs of already-studied posts or referenced resources)

Such quality decay negatively influences the readability and understandability of posts, which
may further discourage the participation of users [33]. To avoid the quality decay of the sites, Q&A
sites like Stack Overflow provide official recommendations for effective question writing [7] and
answer writing [8], by incorporating the suggestions [1, 2] from the highest reputation community
member in Stack Overflow, Jon Skeet [9] who answered more than 34,000 questions in the last
decade. These guidelines include different quality aspects such as adding source code, containing as
much detail as possible, providing links to related resources, checking post formatting and spellings,
being polite, etc. All of these guidelines can be regarded as site-specific quality assurance policies.
By following these policies, the questions and answers created by users will be clear and easy to
understand, leading to the boost of site quality.
Although all users are encouraged to obey the quality assurance policies, many users may still

violate it carelessly or unintentionally. New users may not even be aware of the existence of these
policies initially until other users point out the issues in their posts and recommend relevant policies
to them. That is, quality assurance policies are a kind of tacit knowledge and implicit community
norms in a Q&A site. Such community norms include a set of behaviours expected in a community,
based on the community’s values, traditions, policies, etc [4]. Although there are guidelines for
users to read, they may still not clearly understand what they should or should not do in different
circumstances, because the guidelines are mostly high-level principles and descriptions which
lack detailed examples of patterns and anti-patterns. Furthermore, many community norms are
context sensitive, which lead to different rules in different context. For example, users should use
Markdown list to highlight text structure, while using proper code indents for code structure on
Stack Overflow. Therefore, it is not only difficult for policy makers to enumerate all policy rules,
but also for users, even experienced users to decide what rules they should use in different contexts.

To ensure the site quality [36], Stack Overflow encourages users, especially experienced users3
to collaboratively edit the posts to make them comply with the site quality standards. Among
36,943,972 posts including questions and answers (as of August 2017), 14,639,359 (39.6%) of them
have been edited at least once. Post edits involve not only minor corrections of misspellings and
grammar errors, but also improving text and code formatting, removing unnecessary contents, and
adding related resources (e.g., screenshots) or hyperlinks.

Although collaborative editing is beneficial for the community [33], there are still three problems
with suchmechanism. First, it requires significant community effort, especially from high-reputation
users to edit the posts directly and/or approve edits by other users. Second, some violations of
community norms, especially relatively complicated ones such as whether some code, images or
hyperlinks are needed or not, are difficult to spot, as they may require a good understanding of
the question or answer content. Third, all these collaborative edits are reactive to existing policy
violations which may have already harmed the readers of the posts before edits, or made it difficult
for those who want to help to answer the questions.

In addition to collaborative editing for reactive policy assurance, we also need a more proactive
mechanism of policy assurance which could check a post before it is posted, spot the potential
issues in the post, and remind the post owner to fix issues if any. If the post owner publishes the post
regardless of the proactive warnings of potential issues, this policy assurance checker could also
attract other users’ attention to such potentially problematic posts so that these users could either
edit the posts directly or recommend the post owner to edit the post timely. The goal of our work is
to develop such a proactive policy assurance mechanism which can complement the collaborative

3https://stackoverflow.com/help/editing

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

https://stackoverflow.com/help/editing

Data-Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites 33:3

editing mechanism. Our work is data driven and built on top of existing collaborative editing
patterns by users. Therefore, our research questions are two-fold: 1) what kinds of community norms
are manifested in collaborative edits? 2) what techniques can effectively learn collaborative editing
patterns by human users to assist users in following community norms proactively?

To answer the first research question, we conduct an empirical study of millions of collaborative
edits on Stack Overflow to understand common types of post edits and editing details within
these types. By analysing the topics in the comments of post edits, besides minor sentence-level
edits, four middle-level editing types emerge, including code formatting, text formatting, hyperlink
modification and image revision. Chen et al.’s sentence correction method [20, 21] can correct only
minor mistakes like misspellings or grammar errors, but it cannot recommend more complex post
edits such as formatting code or text, adding hyperlinks, or adding images. Considering the wide
range of post contents and formats involved in post edits (see Fig. 1 for examples), it would require
significant manual effort to develop a complete set of rules for representing editing patterns.
This challenge motivates us to develop a deep-learning based post policy assurance janitor to

recommend to post owners or other users potential mid-level edits that may be needed to make a
post meet community norms in Stack Overflow, such as post edits shown in Fig. 1. This janitor
can also justify its prediction by pointing out the post content relevant to the predicted edits. In
particular, we formulate post edit recommendation as a text classification problem, in which a post
can be predicted as “need certain type of edit” or “no need for certain type of edit”. In this work, we
consider four types of mid-level post edits, i.e., code format, text format, link modification, image
revisions identified in our formative study of collaborative edits. Inspired by the recent progress of
deep learning for text classification [26, 35, 51], we adopt Convolutional Neural Network (CNN)
to predict if a post needs or not need any of these four types of edits. Furthermore, we exploit
the computation structure of CNN to identify key phrases in the post that contribute most to a
classification result. This helps users understand why CNN recommends certain edits to the post.
To evaluate our approach, we collect a large dataset of edited posts (as positive data) and non-

edited posts (as negative data) from Stack Overflow post edit history for model training and testing.
Our results show that our approach outperforms other machine learning based and deep learning
based baselines for post edit prediction. We then explain the detailed comparison of our model with
the baselines, and also analyze reasons for common prediction errors by our model. Finally, we
visualize and check what phrases in the posts contribute to the post edit predictions which uncover
the black box of our deep learning model. We make the following contributions in this paper:

• We conduct an empirical study to investigate the Stack Overflow’s collaborative editing
practices, including editing types, users’ attention on different types of edits, scale of changes,
and concrete editing patterns. This study identifies four types of post edits that an automatic
tool can predict and the requirements for the tool.

• We develop a CNN-based approach that learns from historical post editing data to predict the
type(s) of edits that a post may need and help users understand why the edit is recommended.

• We conduct large-scale experiments to evaluate the performance and limitations of our
approach. Our approach achieves good precision, recall, and F1-score (at least 0.7) on a large
dataset of collaborative editing data. Qualitative analysis of the CNN-learned key phrases
confirms their intuitiveness for understanding the CNN’s prediction results.

2 RELATEDWORK
There is a growing body of research on the quality of user-generated content, which can be broadly
divided into two groups: 1) research on the importance of the quality of user-generated content to
the community, and 2) research that assists the quality assurance of user-generated content.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

33:4 C. Chen et al.

The general consensus is that the quality of user-generated content is a key factor to attract users
to visit knowledge-sharing websites such as Wikipedia, Quora, Stack Overflow. Much research
effort has been put into the investigation of the content quality of such websites. For example,
Stvilla et al. [44, 45] carry out an empirical study to examine the information quality aspects of
Wikipedia which can then guide the construction of context-specific information quality models.
Allahbakhsh et al. [12] propose a framework for characterizing various dimensions of quality control
in crowdsourcing systems, and also potential issues and research directions. Studies [33, 36] show
that collaborative editing can improve the content quality of Stack Overflow. Different from these
works, our empirical study distills common post editing types and patterns that manifest implicit
quality assurance policies on Stack Overflow by analysing large-scale historical collaborative
editing data. Analyzing common post editing types and patterns helps us determine the feasibility
of proactive post edit recommendation and inspires the design of our CNN-based approach.
As the sorely manual collaborative editing is time-consuming and labor extensive, machine

learning technique has been developed to assist collaborative editing in online communities. Hu et
al. [29] and Anderka et al. [13] train a classifier to predict the quality issues of articles on Wikipedia.
Wikipedia itself also develops the Objective Revision Evaluation Service (ORES) [3] to separate
blatant vandalism from well-intentioned changes in the edit review process. Ponzanelli et al. [40]
present an approach to detect low-quality posts in Stack Overflow based on simple textual features
and readability metrics. Our edit recommendation approach is different in that it works at a more
fine-grained level. Our approach tells not only if the post is of good or poor quality, but also predict
what type(s) of edits may be needed. In addition, we adopt more advanced deep learning (CNN)
algorithm to improve the prediction performance and justify the model’s prediction.
Some researchers also adopt deep learning methods to assist the quality assurance of user-

generated content. Chen et al. [20] use a RNN encoder-decoder to predict if minor sentence-level
revisions are needed such as grammar errors, misspellings. Xie et al. [47] add attention to the RNN
encoder-decoder to assist grammatical error correction. Both works target at minor revisions, while
our work involves prediction of more complicated editing types such as adding code or text format,
hyperlinks or images. Compared with their sentence-level prediction, our task is more difficult
with modeling more contextual information at post-level which involves multiple sentences.

We formulate the post edit prediction in this work as a text classification problem. Many ap-
proaches have been proposed to tackle that problem, ranging from machine learning [25, 30] to
deep learning [26, 35, 51]. Among deep learning based methods, CNN [51] and RNN [35] are widely
adopted for text classification. As RNN especially LSTM is capable at capturing the overall semantic
of text, it works well in a broad range of tasks except when the task is essentially a keyphrase
recognition task [14, 49]. According to our observation, most post edits depend on some key phrases
or words in the post, hence we adopt the CNN model in this work. In addition, by leveraging key
phrase recognition capability of CNN, we can further extract those key phrases which can help
users understand why certain type of post edits are recommended.

3 EMPIRICAL STUDY OF COLLABORATIVE EDITING IN STACK OVERFLOW
Stack Overflow is selected as our study subject, not only because of its popularity and large user
base [17–19], but also because it is a well-known online Q&A site which supports collaborative
editing [33, 36]. We download the latest data dump4 of Stack Overflow which contains 36,943,972
posts (including 14,237,281 questions and 22,618,594 answers). It was released by Stack Overflow at
27th August 2017 and it was a snapshot of all post edits since the launch of Stack Overflow in 2007
to 27th August 2017. Based on this large dataset, we carry out an empirical study of post edits in

4https://archive.org/download/stackexchange

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

Data-Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites 33:5

4.	Link	Modification

1.1	Minor	Revision	(Spelling)

1.2	Minor	Revision	(Grammar)

2.	Code	Edit (Format)

3.	Text	Edit (Format)

5.	Image	Revision

Fig. 1. Examples of five types of post edits

Stack Overflow to understand the characteristics of post editing and to motivate the required tool
support.

3.1 What has been edited?
In Stack Overflow, there are three kinds of post information which can be edited, i.e., question
tags, question title, and post body [33]. As of August 27, 2017, there have been in total 26,025,446
post edits. Among them, 2,106,079 (8.1%) are question-title edits, 2,930,379 (11.3%) are question-tag
edits, and the majority of post edits (20,988,988 (80.6%)) are post-body edits5. The tags of 2,498,568
(17.6%) questions, the titles of 1,832,054 (12.9%) questions, and the body of 13,341,488 (36.2%) posts
have been edited at least once. Overall, post-body edits make up the majority of post edits. And
compared with adding/removing question tags, revising question titles, post-body editing is more
complex (further studied in the next question). Therefore, we focus on post-body edits in this work.

3.2 What kinds of edits have been made?
We analyze the comments of post edits to understand what post edits are about. In Stack Overflow,
when users finish editing a post, they can add a short comment to summarize the post edit. We

5Some posts that need some edits may not be actually edited (false negatives), while some posts that have been edited may
not need the edits (false positives). We assume that the majority of Stack Overflow post editing data is reliable due to the
community curation of the site content.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

33:6 C. Chen et al.

Table 1. Frequent phrases from post-edit comments
Unigram Bigram Trigram

Phrases Frequency Phrases Frequency Phrases Frequency
http 1585947 improve format 439122 insert duplicate link 45842
format 1481740 code format 235428 fix code format 28170
code 1102378 add code 110441 improve code format 22391
grammar 359107 fix grammar 100943 fix trivial typos 11617
link 344236 correct spell 100805 add code format 8983
spell 329189 add link 69231 add syntax highlight 6383
typo 197242 fix typo 68143 add code example 6279
example 150384 fix format 64678 add code block 6191
rollback 103205 add example 38924 fix code indentation 6015
image 77574 add detail 37293 add backticks around 5409
readability 73245 syntax highlight 23504 add code snippet 5403
syntax 70763 code indentation 21247 fix code block 5373
indentation 68273 add image 19264 format code block 4911
highlight 62129 edit code 17495 add sample code 4830
reference 46467 update link 17289 add example code 4693

collect all post-edit comments and apply standard text processing step to post-edit comment such
as removing punctuations, lowercasing all characters, and excluding stop words.

3.2.1 Frequent words or phrases. We extract unique unigrams, bigrams and trigrams from post-
edit comments and count their frequencies in the corpus of post-edit comments. n-gram is a
contiguous sequence of n words from text. The most frequent unigrams, bigrams and trigrams
can be seen in Table 1. Some frequent words and phrases are about grammar problems such as
“grammar”, “correct spell”, “fix trivial typos”. In addition, post-edit comments also indicate many
other types of post edits, such as code formatting (“code format”, “fix code indentation”), text
formatting (“readability”, “syntax highlight”), hyperlink modification (“http”, “update link”, “insert
duplicate link”), and image revision (“add image”).

3.2.2 Editing topics and types. To extract common editing types, we adopt the Latent Dirichlet
Allocation (LDA) model [16] to analyze the post-edit comments. LDA is a statistical model for
discovering abstract topics that occur in a collection of documents in which each topic consists
of a set of keywords. A significant limitation of LDA is that it considers only single words (i.e.,
unigrams). However, as seen in Table 1, a single word may not capture the exact semantics of the
post-edit comments. In contrast, phrases that are composed of several words are more intuitive to
understand the intention behind post edits, such as add syntax highlight instead of highlight, fix
code format rather than code.
Therefore, these multi-word phrases must be recognized and treated as a whole in LDA model.

We adopt a simple data-driven and memory-efficient approach [38] to detect multi-word phrases in
post-edit comments. In this approach, phrases are formed iteratively based on the unigram and
bigram counts, using the following formula:

score(wi ,wi+1) =
count(wiwi+1) − δ

count(wi) × count(wi+1)
× N (1)

The wi and wi+1 are two consecutive words. δ is a discounting coefficient to prevent infrequent
bigrams to be formed. That is, the two consecutive words will not form a bigram phrase if they
appear as a phrase less than δ times in the corpus. N is the vocabulary size of the corpus. In this
work, we experimentally set δ at 10 and the threshold for score at 15 to achieve a good balance
between the coverage and accuracy of the detected multi-words phrases.
Our method can find bigram phrases that appear frequently enough in post-edit comments

compared with the frequency of each unigram, such as “improve format”. But the bigram phrases
like “it is” will not be formed because each unigram also appears very frequently in the text. Once
the bigram phrases are formed, we repeat the process to detect trigrams. All these phrases are then

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

Data-Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites 33:7

Table 2. Topics of post-edit comments
ID Topic Name Keywords
1 fixing grammar minor grammar, improve grammar, syntax, fix grammar
2 spelling correction typos, fix typo, spell mistake
3 code modification code snippet, indent code, code block
4 format improvement improve format, reformatted, layout, remove fluff
5 body edits body, character, clarity, improve answer, example, info, highlight
6 links modification fix break link, link, update link
7 image revision image, add image, fix image
8 title edits edit title, change title
9 tag edits edit tag, remove obsolete tag, add tag, fix tag

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

Co
un
ts

M
illi
on
s

Similarity

59.37%

14.43%
8.43%

5.63%3.82%

1.0

Fig. 2. The count of original-edited post body in different similarity range

concatenated with underline like “improve_format” in the corpus of post-edit comments, and then
we use the LDA model to extract the topics.

Table 2 lists 9 topics with corresponding keywords of each topic. Note that we annotate the
topic name with our own summarization based on the topic keywords. According to these topics in
post-edit comments, there are five major post-body editing types (except #8 title edits and #9 tag
edits), including 1) minor revisions (#1 fixing grammar and #2 spelling correction), 2) code revision
(#3 code modification and #4 format improvement), 3) text revision (#4 format improvement and
#5 body edits), 4) link modification (#6 link modification), and 5) image revision (#7 image revision).
For each of these five editing types, we also display real-world examples in Fig. 1. These five editing
types represent the community norms that Stack Overflow commits its effort to maintain.

3.3 What is the scale of changes that post edits involve?
User can decide to carry out five different types of edits to post body according to different goals
or context. To understand the scale of changes that post edits involve, we measure the similarity
between the post body before an edit and the post body after the edit. Given a post edit, let oriдinal
and edited be the text content of the original and edited post body. We use the text-matching
algorithm [15] to find the char-level Longest Common Subsequence (LCS) between the oriдinal
and edited content. We measure the similarity between the original and edited post body as:

similarity(oriдinal , edited) =
2 ∗ Nmatch

Ntotal
(2)

where Nmatch is the number of characters in the LCS and the Ntotal is the total number of all
characters in both the oriдinal and edited content. The similarity score is in the range of 0 to 1,
and the higher the similarity score, the fewer changes between the original and edited post body.
As shown in Fig. 2, among the 20,988,988 post-body edits, the original and edited post body of

59.37% edits has the similarity score between 0.9 and 1. That is, the majority of post-body edits
involve small scale of changes. We randomly sample 100 edits with similarity score in 0.9 and 1

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

33:8 C. Chen et al.

and another 100 edits with similarity score smaller than 0.9. We manually check these edits and
summarize three different scales of changes.

First, many edits areminor changes such as correctingmisspellings (e.g., “javascrip” to “javascript”),
grammar errors (e.g., “it slow down the whole program” to “it slows down the whole program”),
keyword highlight (“click OK button” to “click ‘OK’ button ”), etc. These revisions involve only
sentence-level edits without the needs for the whole-post consideration.
Second, some edits are medium-level changes such as adding some Markdown elements to

organize the text like adding “header” to make the subtitle bold, adding “” to make the bullet
points clearer. Formatting is also frequently applied to the code, for example, adding code tag
“<code>” or adding code indents to discriminate code from plain text. Users may also add external
resources to their posts such as the hyperlinks or image links. Although these medium-level edits
involve larger scale of changes than minor revisions, most posts after medium-level changes are still
very similar to the original posts, i.e., their similarity score is mostly higher than 0.9. But different
from minor changes, decisions on such medium-level changes can only be made by considering
the content of the whole post (see Fig. 6 for examples).

Third, other edits are major changes such as clarifying a post by adding an example code snippet,
a new paragraph of text description, or replacing the current code with more efficient code. Such
major changes always involve significant changes of post content so that most edited posts are not
very similar to their original versions, leading to similarity score smaller than 0.9.

The minor changes like correcting grammar and spellings have already been well solved by Chen
et al.’s work [20]. In this work, we are moving one step further by focusing on the medium-level
changes including code format edits, text format edits, link edits, and image edits. Major text or
code changes are much more complicated than these four types of edits. So they need deeper
understanding of not only a post content, but also other posts in the discussion thread, such
as editing an answer by considering its questions, editing a question’s body by considering its
comments. We leave such major changes as the future work.

3.4 What are the detailed editing operations?
In Stack Overflow, all posts are written in Markdown language6. For each of the four types of post
edits (code formatting, text formatting, hyperlink modification and image revision) summarized in
the last section, we observe the corresponding detailed Markdown changes for detecting instances
of a particular type of edits as follows:

• To distinguish the code from the text, Stack Overflow requires users to annotate their code
with <pre> and <code> tags (Fig. 1.2). Users also have to use proper code indents for improving
code readability. We call such revision as code formating.

• To improve text format, users are encouraged to add headers and use list to make their post
as clear as possible (Fig. 1.3). Such change is reflected in the post edits by adding HTML tags
like <h1>, <h2> and .

• For link modification, Stack Overflow provides two different ways. First, users can directly
add bracket (i.e. < and >) to enclose the original link text to make it clickable (Fig. 1.4). Second,
user can add the link reference to a piece of text in the post in which the link will be listed at
the end of the post.

• In Stack Overflow posts, embedding an image requires a special link ending with postfix
including .png, .jpg, .gif, .bmp and .tiff (Fig. 1.5). We refer to this kind of revision of image
links as image revision.

6https://stackoverflow.com/editing-help

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

https://stackoverflow.com/editing-help

Data-Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites 33:9

63.6%

71.8%

90.9%

88.1%
6.1%

9.8% 1.7% 0.1%

30.3%

18.4% 7.4% 11.8%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Code	Formatting Text	Formatting Hyperlink	
Modification

Image	Revision

Co
un
ts

Th
ou

sa
nd

s Insert

Replace

Delete

(a) Counts of different types of edits and revisions

0

500

1000

1500

2000

2500

2 0 0 9 2 0 1 0 2 0 1 1 2 0 1 2 2 0 1 3 2 0 1 4 2 0 1 5 2 0 1 6 2 0 1 7

Co
un

ts
Th
ou
sa
nd
s

Year

Code	Formatting

Text	Formatting

Hyperlink	Modification

Image	Revision

(b) Frequencies of different types of edits over time

Fig. 3. Statistics of different types of edits and different kinds of revisions

For each editing type, there are three kinds of revisions i.e., add, delete and replace. If a post
undergoes an add revision, users add new contents that belong to some type(s) of edits. On the
contrary, delete revision means that some contents related to some editing types are deleted from the
initial posts. replace revision means that some contents related to some editing types are replaced
by other same-type content. For example, if the size of the header in a post is changed (e.g., from
h1 to h2), then that post is considered having a replace text format edit. However, if the header is
replaced by a hyperlink, then the post undergoes a delete text format edit and an add hyperlink edit.

By differencing the original post body and the edited post body, we count the number of different
types of edits and different kinds of revisions, as summarized in Fig 3(a). Overall, most revisions
are about add revisions, followed by delete revisions and then replace revisions.

• 2462919 (61.20%) post-body edits include code format edits. Among them, 1567272 (63.63%)
edits are adding code format, 150597 (6.11%) edits are replacing code format, and 745050
(30.25%) edits are deleting code format;

• For text format editing, 73708 (1.83%) post-body edits include some edits of header or list.
Among them, 52945 (71.83%) posts have been added headers or lists, 7198 (9.77%) posts have
been replaced headers or lists, and 13565 (18.40%) posts have been deleted headers or lists;

• For hyperlink modification, 1238935 (30.79%) post-body edits include edits of hyperlinks.
1126252 (90.90%) edits are adding hyperlinks, 20612 (1.66%) edits are replacing hyperlinks,
and 92071 (7.43%) edits are deleting hyperlinks;

• For image revision, 248795 (6.18%) post-body edits include edits of images. 219215 (88.11%)
edits are adding image, 302 (0.12%) edits are replacing image, and 29278 (11.77%) edits are
deleting image.

In Fig. 3(a), we observe that the frequency of deleting code format is much higher than other types
of delete edits. Analyzing deleting code format edits reveals two main reasons. First, users want to
improve code formatting by deleting unnecessary code indents, e.g., changing from eight-space
indents to four-space indents. Second, some text contents are sometimes presented in code format.
Users fix the misuse of code format by deleting code format.

We also calculate the frequency of the four types of edits over time, which is shown in Figure 3(b).
Overall, all the four types of post edits increase along the time. Nevertheless, the code format edits
rise up the fastest, followed by link modification edits and text format edits. The image revision
edits only account for a small proportion of edits and the number of image revision edits goes up
relatively slowly, compared with the other three types of edits.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

33:10 C. Chen et al.

Summary: Post-body edits account for 80.6% of all post edits in Stack Overflow. They involve
a variety of editing types, including minor grammar and spelling correction, the four types of
medium-scale edits (code formatting, text formatting, link modification and image revision), and the
large changes of post contents. In this work, we focus on assisting the four types of medium-scale
edits. Although different types of edits differ in their occurrence frequencies, all of them attract
substantial users’ attention over time. As such, a post-body edit recommendation algorithm should
be able to recommend all the four types of edits to the posts. Each of these four types of edits may
involve three kinds of revisions: add, replace and delete. Add revision occurs much more frequently
than the other two kinds of revisions. Therefore, we focus on assisting add revision in this work.

4 RECOMMENDING POST-BODY EDITS BY CONVOLUTIONAL NEURAL NETWORK
The four types of post-body edits identified in our empirical study manifest Stack Overflow poli-
cies and norms for curating the post body. Unfortunately, these policies and norms are implicit
knowledge in millions of post-body edits. Considering the diversity of post-body editing types and
contexts, it would require significant effort to manually build a complete set of policy assurance
rules to deal with all different situations. Therefore, we propose a deep-learning based approach
which can automatically learn editing patterns from historical post-body edits, and recommend
post-body edits and justify its recommendation based on the learned post-body editing patterns.

4.1 Approach overview
The core of our approach is a Convolutional Neural Network (CNN). To train the CNN for post-body
edit prediction, we first collect all original posts which are then edited by the four editing types
identified in our empirical study (Section 4.2). Note that a post may undergo one or more types of
edits. We then formulate the post-body edit recommendation task as a text classification problem.
The input to the classification problem is the text content of a post’s body, and the output is a decision
whether the post body needs a particular type of edit or not (one decision for each of the four editing
types). We train the CNNmodel with a large dataset of < oriдional−post , post−body−edit−type >
pairs (Section 4.3). The trained CNN model can be used to not only predict the types of edits needed
for a given post, but also point out the key phrases in the post content that are relevant to the
recommended edits (Section 4.4).

4.2 Collecting the dataset of < oriдional − post , post − body − edit − type > pairs
In Stack Overflow, a post can be edited several times. Assume a post has N versions, i.e., undergoing
N − 1 post edits. For each post edit i (1 ≤ i ≤ N − 1), we collect a pair of the original post-body
content and the edited content. The original content is from the version i of the post before the edit,
and the edited content is from the version i + 1 of the post after the edit. As seen in Fig. 3(a), most
edits are additive revisions. Therefore, in this work we focus on predicting whether a post needs
adding code format, adding text format, adding hyperlink and/or adding image. Correspondingly,
we collect only the addition of these four types of edits from historical post-body edits.

• For adding code format, we select posts that include inserting code indents. That is, the added
contents must contain only indents such as tabs and spaces within a sentence line. Besides,
the Markdown tag <code> and <pre> are also considered as the recognition marks for the
edits of code formats. Thus, the edits that include the addition of <code> and <pre> are also
regarded as adding code format.

• For adding text format, we find the addition of Markdown elements of list and headers. The
list addition includes adding line breaks or list markdown characters (+, −, ∗ and numbers).
The header addition includes adding line breaks or one of the −, = or # marks.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

Data-Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites 33:11

‘Here’s an example of equal height columns…’

Word Embedding

Output Matrix

Input Matrix

Convolutional
operation

Maxpooling

Filters

Concatenating

𝑓𝑎(𝑾 ∙ 𝑿 + 𝑏)

(a) CNN architecture for post-edit prediction

 ‘ Here’s an example of equal height columns… ’

Deconvolution

Probability prediction

Unpooling

Tracing back

𝑃0 𝑃1

(b) Key phrase location process

Fig. 4. Approach

• For adding hyperlinks, we find the addition of hyperlink Markdown elements in the edits.
The links are not image links like those ending with .jpg, .png, etc.. Moreover, there must be
the angle symbols “< >” that contain a hyperlink (e.g., <https://example.com>) or the square
brackets “[]” before a hyperlink (e.g., [Google] (http://www.google.com/)).

• For adding images, there must be link addition with image postfix including .jpg, .png, .tiff,
.bmp and .gif. To recognize adding images, the edits must also contain the angle symbols “<
>” or the square brackets “[]”.

As we formulate post-body edit recommendation as a text classification problem, the collected
< oriдional −post , post −body −edit − type > pairs are positive data for the classification problem,
i.e., posts that need certain types of edits. We also need to collect posts which do not need certain
types of edits, i.e., negative data. Therefore, for each type of edits, we collect the same number7 of
posts that do not need this type of edits. However, a post that does not undergo a type of edit does
not necessarily mean that it does not need this type of edit. To mitigate this potential threat, we
collect negative data only from posts that have been created more than a year ago, have received
more than 3 score points (upvote - downvote), and do not undergo a particular type of edit. The
underlying rationale is that a post that has been posted long enough and attracted enough attention
in the community but still does not undergo a type of edit would be unlikely to need that edit.

Finally, from the post-body edits before Aug 27, 2017, we collect 1,305,593 posts for adding code
format, 50,405 posts for adding text format, 1,086,635 posts for adding hyperlinks, 211,397 posts for
adding images, and the same numbers of negative data for each type of edits.

4.3 CNN for Edit Prediction
Convolutional Neural Networks (CNNs) is a class of deep, feed-forward neural networks, most
commonly applied to analyzing visual imagery. Apart from images, some recent works have also
successfully applied CNNs to model sentence- and document-level semantics for NLP tasks such as
text classification [22, 48], sentiment analysis [24, 42], and paraphrase detection [28, 50].
Figure 4(a) shows the model architecture of the CNN for our post-edit prediction task. Instead

of image pixels, the input to NLP tasks are sentences or documents which need to be represented
7To make a balanced dataset of positive and negative data for model training and testing [46].

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

33:12 C. Chen et al.

as a matrix. To apply the CNN to text, words of a sentence need to be converted into vectors by
word embeddings [37, 38] and these vectors comprise the matrix. Let xi ∈ Rk be the k-dimensional
word vector corresponding to the i-th word in the sentence. A sentence of length n is represented
as x1:n = x1 ⊕ x2 ⊕ ... ⊕ xn , where ⊕ is the vector concatenation operator.

We treat the matrix (sentence vectors) as an “image”, and perform convolution with filters that
slide over each row of the matrix . In text applications, because each word is represented as a
k-dimensional vector, it is reasonable to use filters with widths equal to the dimensionality of the
word vectors (i.e., k). Thus we simply vary the window size (or height) of the filter, i.e., the number
of adjacent words considered jointly.

One may also specify multiple kinds of filters with different window sizes, or use multiple filters
for the same window size to learn complementary features from the same word windows. In
Figure 4(a), we illustrate 3 filters for the window size of h = 3, 4, 5. The dimensionality of the feature
map generated by each filter will vary as a function of the sentence length and the filter’s window
size. Thus, a pooling function is then applied to each feature map to induce a fixed-length vector. A
common strategy is 1-max pooling, which extracts a scalar (i.e., a feature vector of length 1) with
the maximum value for each filter. The idea behind it is to capture the most important feature, one
with the highest value for each feature map.

Together, the outputs from each filter can be concatenated into a fixed-length, “top-level” feature
vector which is then fed through a fully connected layer with Softmax as its activation function to
generate the final classification. Our task is a binary classification task and hence has two possible
outputs for each edit type (need this type of edit or no need for this type of edit). All the four editing
types are independent, and it means that one post can receive one or several of the four types of
edits. We train four CNN models separately for the four editing types respectively. For a post, the
four models will individually determine if the corresponding editing type is needed or not.

The training objective to minimize the categorical cross-entropy loss with calculating parameters
such as the weight matrix, the bias term of the filters, the weight vector and the bias term of the
classifier. Optimization is performed using Stochastic Gradient Descent and back-propagation[41].

4.4 Locating the Key Phrases in Posts to Explain the Edit Prediction
As existing CNN de-convolution methods generally focus on image classification [39], we propose
a different method for locating the key phrases in document-level texts. An significant feature of
CNN model in text classification is that each element of output matrices in intermediate layers
(convolutional layer - fully connected layer) represents a n-gram phrase where n is determined
by the filter window sizes in the convolution operations. Therefore, we can extract prominent
weighted outputs representing key phrases.

As seen in Fig. 4(b), our key phrase extracting method includes two steps: 1) tracing back through
the model to locating the filtered phrases in the input layer; and 2) predicting the contribution
score of the phrases’ corresponding features in the fully connected layer to the prediction class.
Sorting the phrases by the prediction scores helps to locate key phrases in the post content that
altogether determine the predicted editing type for the given post.
Locating phrases is actually a process to find by which continuous word indices each output

value in the concatenate layer is influenced through a series of feature mapping, unpooling and
deconvolution operation. After mapping the feature in the concatenate layer to the feature map in
the max-pooling layer that the feature belongs to, we detect the location of this maximum feature
value in the feature map. Unpooling means that generating a new feature map of the same size as
the original feature map by only keeping the maximum value but setting all other values in the
feature map to 0. Finally, a phrase in the input text with word vectors in the input sentence matrix
can be extracted after applying deconvolution to the feature map with corresponding filters.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

Data-Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites 33:13

The predicted class of our CNN model is calculated by applying Softmax function on the sum
of dot product of the weight matrix in the fully connected layer and the output feature vector of
the concatenate layer. To gain the probability to which class a phrase in the input text belongs, we
can perform the same Softmax on partial output feature vector of the concatenate layer due to

their linearity and discreteness. The formula is as:P(y = j |x) = ex
Twj∑2

k=1 e
xTwk

(1 ≤ j ≤ 2) where x is a

vector comprising the output features in the concatenate layer corresponding to the same phrase.
This is because several filters may extract the same phrase more than once. Each value in vectorw j
is a fully connected layer weight of class j for its corresponding output.

If the most prominent phrase is needed, this method should only be applied once for the maximum
feature in the concatenate layer. However, as a document-level text usually have several key phrases
altogether determining whether the text should undergo a particular type of edit, the probability
computation for all extracted phrases followed by a probability sorting step is necessary to obtain
the top-N key phrases that contribute most to the prediction of a editing type.

4.5 Implementation
Different from the illustrative model in Fig. 4(a), our implementation is more complicated. The
input word embedding dimension is 128. Each convolutional layer uses filters of window sizes
3, 4, 5 and for each window size, we use 256 filters. We implement our model in Keras [23] with
Tensorflow [11] as the backend. Model training is performed on a Nvidia P40 GPU (24G memory)
with 10 epochs. The training takes about 4 days in total.

5 EXPERIMENT
Our post edit recommendation tool aims to assist post owners or post editors in identifying quality
issues in posts and highlighting key post contents relevant to the identified issues. The quality of
recommended edits will affect the adoption of the tool by the users. In this section, we use randomly
selected historical post editing data to evaluate the quality of recommended post edits by our tool.

5.1 Dataset
From archival post editing history in Stack Overflow data dump, we collect 264,372 posts as positive
data for adding code format, 38,168 posts for adding text format, 228,191 posts for adding links,
and 189,884 posts for adding images (see Section 4.2 for data collection details). The same amount
of negative data (i.e., the posts that do not need certain type of edits) are also collected. Following
the deep learning practice guide [10], we split the whole dataset into three parts. For each edit
type, we randomly take 80% of them as the training data, 10% as the validation data to tune model
hyperparameters (e.g., the number of CNN layers, word embedding dimension), and the rest 10% as
the testing data to evaluate the quality of editing types predicted by our tool [6].

5.2 Baselines
Apart from our own CNN model, we take another four methods as baselines for comparison: the
traditional machine learning methods including 1) logistic regression [25] and 2) SVM (Support
Vector Machine) [30], and deep learning based methods including 3) FastText [26] and 4) attention-
based LSTM (Long Short Term Memory) model. As the traditional machine learning methods are
based on human-engineered text features, we take the widely-used TF-IDF (Term Frequency times
Inverse Document Frequency) [43] as posts features for training logistic regression and SVM model.
FastText is an open-source, light-weight library released by Facebook for text classification. It
incorporates hierarchical softmax and n-gram features into a one-layer fully-connected neural
network for fast text classification. Recurrent Neural Network (RNN) is a class of artificial neural

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

33:14 C. Chen et al.

0

0.2

0.4

0.6

0.8

1

Code
format

Text
format

Links Images

Logistic Regression SVM Fasttext Attention-based LSTM Our CNN

0

0.2

0.4

0.6

0.8

1

Code
format

Text
format

Links Images
0

0.2

0.4

0.6

0.8

1

Code
format

Text
format

Links Images

Precision Recall F1-score

Type Type Type

Fig. 5. Precision, recall and F1-score of five post-additive-edit recommendation methods

network where connections between units form a directed graph along a sequence, and it is widely
used for text classification [31, 34]. To make the RNN baseline more competitive, we exploit its
variant LSTM [27] which can capture long-distance information.

5.3 Evaluation metrics
As our task is a binary classification problem, the quality of our model’s recommendation can be
measured by three widely-used metrics including precision, recall, and F1-score. For all the three
metrics, higher value will lead to better recommendation performance.
Precision is the proportion of posts that are correctly predicted as needing one certain type of

editing among all posts predicted as needing that type of editing:

precision =
#Posts correctly predicted as needinд a type o f edit

#All posts predicted as needinд a type o f edit

Recall is the proportion of posts that are correctly predicted as needing one certain type of
editing among all posts that really need that type of editing:

recall =
#Posts correctly predicted as needinд a type o f edit

#All posts really needinд a type o f edit

F1-score (F-score or F-measure) is the harmonic mean of precision and recall, which combine
both of the two metrics above.

F1 − score =
2 × precision × recall

precision + recall

F1-score will increase when an increase in precision (recall) outweighs a reduction in recall (preci-
sion). That is, a good balance of precision and recall will produce good F1-score.

5.4 Evaluation Results
We report the evaluation results of our CNN model in two aspects. First, we show how accurate
our model can predict if a post needs certain type(s) of edits. Second, we further show how well
our model can locate key phrases that contribute most to the prediction.

5.4.1 Comparison of post-edit prediction accuracy by different methods. Fig. 5 presents the
precision, recall and F1-score of five different methods. Compared with three deep learning-based
models (FastText, attentional-based LSTM, and our CNN model), the performance of traditional
machine learning methods (logistic regression and SVM) is much worse than that of deep-learning
model. It shows that the traditional machine-learning methods are not capable to capture the
semantic of the post. In the following discussion, we only compare three deep-learning methods in
detail. For precision, our CNN model has higher precision in all comparisons except for predicting

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

Data-Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites 33:15

adding hyperlinks compared with attention-based LSTM. High precision is the most important
metric for our post-edit recommendation task, as users are sensitive to false alarms. Furthermore,
erroneous post-edit recommendations may mislead novice users’ post edits which may increase
the approval working load of trusted users (see Section 6.1 for further discussion on this point).
For recall, there is no obvious winner among the three methods. The three methods’ recalls are
almost the same for predicting adding code format. Our model has higher recall than the two
baseline methods for predicting adding hyperlinks, but has lower recall than the two baseline
methods for predicting adding text format. For predicting adding images, our model is better in
recall than attention-based LSTM but is worse than FastText. For F1-score, the three methods
perform almost the same for predicting adding code format and adding text format, but our model
has obvious advantages in predicting adding hyperlinks and adding images, compared with FastText
and attention-based LSTM.
To qualitatively understand the strengths and weaknesses of different methods, we randomly

sample 100 posts in testing data for manual inspection. Different from FastText which regards a
post as a bag of words without order, our model takes into account sequential information which is
important to natural languages. For example, one post contains sentence “You can find more in this
page”, but the post owner forgets to add the hyperlink to “this page”. Although any single word
in this sentence is not so meaningful, they as a whole indicate the need for adding a hyperlink.
Such sentence sequential information is successfully captured by our model leading to an accurate
prediction, while FastText fails to recommend adding hyperlink.

Compared with attention-based LSTM which can also capture sentence sequential information,
our model is more effective in gathering separated information that is far away from each other in
the post. Although attention-based LSTM is designed to capture long-distance information, our
experimental results show that once the post is very long, LSTM may “forget” prior information
when modelling the more recent text, as it reads text sequentially. For example, one of the testing
post begins with “Here is a compilation of verified information from various answers and cited
references ...” and concludes lots of functionalities of several command processors with incomplete
reference links. Attention-based LSTM fails to predict the need for hyperlinks, because the relevant
information is separated at the beginning and the end of the post. Instead, our model can extract
important n-gram key phrases as the features which are fully connected in the last layer for the
final prediction. Therefore, our model can overcome the problem of distant vital information which
leads to better performance than attention-based LSTM.

5.4.2 Error analysis of our model. We also analyse the erroneous predictions by our model for
the four editing types, and identify three main reasons for erroneous predictions:

First, some posts are edited to add more information which is beyond the context of a post. For
example, one post edit adds not only a new hyperlink, but also some new content like “There is
another method...” or “You can also try this...”. The added hyperlink is highly dependent on the new
content. However, as our model can only “see” the post content before editing, it cannot predict
the addition of the hyperlink based on the existing context.
Second, different users may have different opinions regarding what should or should not be

edited, especially for code format and text format. For example, some users prefer to add a header
“Update” or “Edit” to updated content, while others may only add a horizontal line to separate the
updated content from the original content. This often results in some edits being reverted back later,
for example, from initial horizontal separation line to “Update” header and then back to horizontal
separation line. Such back-and-forth edits lead to non-obvious editing patterns, which machine
learning techniques cannot effectively encode.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

33:16 C. Chen et al.

Third, some negative data is not really negative data. Our way to collect negative data assumes
that a post that did not undergo a type of edit does not need that type of edit. Although we use
several heuristics to ensure that this assumption holds (see Section 4.2), the collected negative
data still contains some “noisy” posts. , i.e., posts that did not undergo a type of edit but actually
needs that type of edit. For example, some posts actually need a type of edit, but because it did
not receive enough attention from the community, it did not undergo that type of edit. For such
“noisy” negative posts, our model may actually make the right prediction, but its prediction does
not match the negative label (i.e. no need to edit) of the posts.

5.4.3 Key phrase location. To understand the key phrases that contribute most to our model’s
prediction results, we develop a key phrase visualization method (see Fig. 6(a) to Fig. 6(d) for
examples). In the visualization of key phrases, we concatenate the overlapping phrases and take the
average of the prediction probability of individual phrases as the probability of the concatenated
phrase. The reason for this concatenation step is that the filter window size in our CNN model has
the upper bound, but the key post content that affects the prediction of needing a type of edits is
likely longer than the maximum filter window size. For example, the maximum filter window size
in our current implementation is 5. That is, the CNN “sees” only 5 consecutive words at most. But as
shown in Fig. 6(a) to Fig. 6(d), the post content that is relevant to a type of edits is usually longer than
5. After the concatenation processing, we visualize the background color of a phrase proportional
to its prediction probability. The darker the background color, the higher the probability.

We use this visualization to examine the correspondence between the key phrases that our CNN
model pays attention to in a post to predict the type of needed post edit and the actual post edit
made by users. Fig. 6(a) to Fig. 6(d) present one example for each type of post edit. The left part of
the figure shows the attended key phrases that contribute most to predict a type of edit needed
for a post and the right part shows the actual post edit. In Fig. 6(a), our CNN pays attention to a
code-like sentence and predicts the need of adding code format. This code-like sentence is actually
enclosed in < code > Markdown element in the edited post by users. In Fig. 6(b), our CNN pays
attention to the sentence “the following version of ...” followed by names of several software tools
and predicts the need of adding text format, which is actually made by users. In Fig. 6(c), our CNN
pays attention to the sentence “User the project converter which is designed for” and some follow-up
description of the mentioned tool. It predicts the need of adding hyperlinks, and the actual post edit
does include a hyperlink to the mentioned tool. In Fig. 6(d), our CNN pays attention to a comment
in the code snippet “Display the resulting label matrix” and some other relevant information in
the code snippet and the text description. It predicts the need of adding image, and the post edit
actually includes a test run of the code and the resulting image output.
As these examples demonstrate, our CNN model can identify the most prominent features in a

wide range of information in posts, based on which it can make reliable prediction of the needed
post edits. Furthermore, our key phrase identification and visualization method can be used to
explain the CNN’s prediction results. Compared with just a simple prediction, this explainability
can help post owners or post editors judge the validity of the recommended post edits and may
encourage them to accept the tool’s recommendation. Making the prediction criteria more explicit
is crucial for the acceptance of our deep learning based approach for post-edit recommendation.

6 DISCUSSION
In this section, we discuss the potential impact of our post-edit recommendation approach on
collaborative editing and the generalizability of our approach.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

Data-Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites 33:17

(a) Adding code format

(b) Adding text format

(c) Adding hyperlink

(d) Adding image

Fig. 6. Left: key phrases for predicting a type of edit; Right: actual post edit

6.1 The Impact on Collaborative Editing
Among 20,988,988 post-body edits in Stack Overflow, 13,487,086 (64.26%) of them are self edits,
i.e., the post is edited by the post owner. This includes edits suggested by post viewers using post
comments and edits coming from double checking post content by the post owners themselves.
Fig. 7 shows an example of post comment which asks the post owner to add a screenshot for
a clearer understanding of his question, and the post owner did so accordingly. The significant
amount of self edits and users’ interactions triggering self edits suggest that post owners could

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

33:18 C. Chen et al.

Fig. 7. An example of the users’ interaction triggering post self editing

appreciate the proactive post-edit recommendations which our approach supports. Because this
proactive support can warn the post owners some potential quality issues in their posts before the
posts are published, they have a better chance to get the posts right in the first place, rather than
fixing the issues in an afterthought way. After all, the high-quality questions and answers could be
better received by the community [33].

When a post with some quality issues has been posted anyway, our post-edit prediction can also
be used to attract other users’ attention to the problematic post. As our approach currently predicts
only four types of edits, it may impact to which posts users allocate their attention. However, this
is more like a limitation of our current approach implementation, rather than a methodological
limitation. Furthermore, new editing patterns are likely to emerge over time. It takes time to
accumulate sufficient instances for the deep learning model to learn the new editing patterns.
Before that model update, our approach may impact whether the community should adopt an
existing editing pattern or the emerging editing pattern.

Collaborative editing often provides a mechanism of legitimate peripheral participant for novice
users [32]. In this context, our post-edit recommendation could provide a learning opportunity for
novice users to “observe” the community’s implicit quality assurance practices. This observation
is rather impossible from the raw collaborative editing data or it would take a long time to learn
through trial-and-error style of participation in collaborative editing activities. Having that said,
there could also be some unintended consequences that are worth monitoring. For example, as
our recommendation is not perfect (which is actually impossible for any machine learning based
approach), novice users may accept some erroneous edit recommendations made by the tool due to
the lack of experience and knowledge. This may result in low-quality post edits, which may in turn
increase the approval working load of trusted users.
In any cases, our approach only recommends post edits, and human users always have final

say on what do to with the recommendations. We do not envision that our approach will replace
human decisions on the need of editing a post and how to edit the post. This is especially the
case for the post edits that require deep natural language understanding of the post contents,
which is beyond the capability of current machine learning techniques. But machine-learning based
post-edit recommendation would assist the allocation of user attention and their editing decisions.
On the other hand, as our evaluation shows, machine-learning based post-edit recommendation is
not perfect. They could be erroneous or missed recommendations. Collaborative editing would be
able to deal with machine’s errors. Therefore, machine-learning based post-edit recommendation
and human collaborative editing are complementary. The effective mechanism to blend machine-
learning based post-edit recommendations and human collaborative editing is an interesting
research direction to explore.

6.2 The Generalization of Our Approach and Findings
6.2.1 The Generalization to Other Edits. In Section 5.4, we report and analyze the performance

of our CNN-based model for predict mid-level additive edits. However, it is important to note that
our approach is not limited to additive edits. In fact, we conduct similar performance evaluation for
other types of edits including replacing and deleting edits as those reported in Section 5.4. Table 3
shows that our model can achieve high precision (0.7977 ∼ 0.9088), recall (0.7830 ∼ 0.9739), and

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

Data-Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites 33:19

type #Posts Precision Recall F1-score
replacing link 14,580 0.7977 0.7830 0.7903
replacing text format 15,671 0.8193 0.8383 0.8287
replacing code format 24,466 0.9088 0.9739 0.9402
deleting link 50,354 0.7828 0.7833 0.7830
deleting image 17,361 0.8942 0.8611 0.8773
deleting text format 35,244 0.8059 0.7898 0.7978
deleting code format 171,525 0.8576 0.8289 0.8430

Table 3. Performance of our model in replacing and deleting edits

(a) Quora (b) English StackExchange (c) Zhihu (d) Brainly

Fig. 8. Examples of markdown applications in other sites

F1-score (0.7830 ∼ 0.9402). These performance metrics have no significant difference from those
for predicting addition edits. For replacing code format and deleting image, the performance is
actually better than that of adding code format and adding image. Such results demonstrate the
generalization of our model to other kinds of edits8. As our approach is a deep-learning based
method, it is not applicable when the amount of certain type of post edit is too small. For example,
there are only 595 replacing edits of images, and that is why we do not have the performance metric
for replacing-image edits in Table 3.

6.2.2 The Generalization to Other Sites. There are many Q&A sites in the world, and some
popular ones are summarized in an Wikipedia page [5]. Following this list, we manually check
if some Q&A sites may adopt markup format similar to that in Stack Overflow. After filtering
non-Q&A or closed Q&A sites, there are seven Q&A sites left which are founded in the recent
decade i.e., the ones after 2008. These seven Q&A sites include Jobstr, Zhihu, Ask.fm, Brainly, Quora,
Sharecare, Stack Exchange. According to our observation, 5 of these seven Q&A sites contain markup
style formatting which allow users to attach list, header, image, hyperlinks in the posts. The other
2 sites (Jobstr, Ask.fm) do not adopt markup format.

This work examines collaborative editing data of Stack Overflow, and is based on the observed
collaborative editing characteristics, we develop a deep learning based approach for predicting
whether or not a post may need four types of edits. However, it is important to note that our
data analysis method and deep learning approach are totally data driven, not tied to any specific
collaborative editing or quality control process in community Q&A sites. Therefore, we would
expect that our data analysis method and deep learning approach can be applied to other Q&A
sites, where historical collaborative editing data is available.

Of course, the collaborative editing characteristics and the types of edits to predict are very likely
to differ from one site to another. For sites which belong to Stack Exchange network, as these sites
obey the same rule as Stack Overflow, our analysis and method can be directly extended to them.
For other sites with also markup style formatting like Quora, the differences between these sites
with Stack Overflow can be relatively small. Our analysis and approach may be easily adapted to
these Q&A sites. But the differences can be considerably big between Stack Overflow and those
8We do not report the details of experiments results for replacing and deleting edits because the results and analysis are
very similar to those reported for additive edits.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

33:20 C. Chen et al.

sites without markup formatting like Jobstr or Ask.fm. In such cases, a detailed empirical study of
the collaborative editing characteristics is required to determine what edits can be predicted and
what methods will be effective.

In this work, we confirm the prediction performance of our approach using historical collaborative
editing data. But it is still an open question whether our approach can perform well in a large-
scale, live deployment on Stack Overflow. Several issues require further investigation, such as
how to integrate our recommendation in the Q&A and collaborative editing process, whether the
recommended post edits will be accepted by the community in practice, and how they may impact
the post owners and post editors’ behavior. We leave these questions as our future work.

7 CONCLUSION AND FUTUREWORK
In this paper, we conduct an empirical study of historical collaborative editing data on Stack
Overflow to investigate the need for proactive quality assurance on Q&A sites. Our study analyzes
various aspects of collaborating editing behaviors and results, including common editing types,
users’ attention on different types of edits over time, scale of changes involved in post edits, and
patterns of concrete editing operations. Based on our empirical observation, we identify four
types of post edits (adding code format, adding text format, adding hyperlinks and adding images)
that occur frequently by collaborative editing, and at the same time, involve medium-scale of
changes that are feasible to predict using machine learning techniques. A CNN-based post-edit
recommendation approach has been developed and the CNN model has been trained using large-
scale post editing data. Our evaluation through historical post editing data demonstrates the quality
of the recommended post edits by our approach.
We discuss the potential benefits of our post-edit recommendation approach for post owners,

post editors and novice users. However, deploying our approach on Stack Overflow may have
complicated impacts on social process and collaborative editing, which deserve further studies in
the future. We will ask novice and trusted users on Stack Overflow to try our tool in practice and
analyze the feedback to gauge its design. We will also extend our approach to other online Q&A
sites, similar to or different from Stack Overflow, to understand the generalizability of our data
analysis method and our deep learning approach.

ACKNOWLEDGMENTS
We appreciate the valuable comments from the anonymous reviewers. This project is partially
supported by the FIT ECR seed grant in Monash University.

REFERENCES
[1] 2009. Answer technical questions helpfully. https://codeblog.jonskeet.uk/2009/02/17/

answering-technical-questions-helpfully/. (2009). Accessed: 2018-03-01.
[2] 2010. Write the perfect question. https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/. (2010).

Accessed: 2018-03-01.
[3] 2017. The Objective Revision Evaluation Service. https://ores.wikimedia.org/. (2017).
[4] 2018. Community norm. http://communitymgt.wikia.com/wiki/Community_norm. (2018). Accessed: 2018-06-20.
[5] 2018. Comparison of Q&A sites. https://en.wikipedia.org/wiki/Comparison_of_Q&A_sites. (2018). Accessed: 2018-06-

20.
[6] 2018. Deep Learning Tutorial. http://deeplearning.net/tutorial/deeplearning.pdf. (2018). Accessed: 2018-06-20.
[7] 2018. How do I ask a good question? https://stackoverflow.com/help/how-to-ask. (2018). Accessed: 2018-03-01.
[8] 2018. How do I write a good answer? https://stackoverflow.com/help/how-to-answer. (2018). Accessed: 2018-03-01.
[9] 2018. Thanks a Million, Jon Skeet! https://stackoverflow.blog/2018/01/15/thanks-million-jon-skeet/. (2018). Accessed:

2018-03-01.
[10] 2018. Training, test, and validation sets. https://en.wikipedia.org/wiki/Training,_test,_and_validation_sets. (2018).

Accessed: 2018-06-20.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

https://codeblog.jonskeet.uk/2009/02/17/answering-technical-questions-helpfully/
https://codeblog.jonskeet.uk/2009/02/17/answering-technical-questions-helpfully/
https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/
https://ores.wikimedia.org/
http://communitymgt.wikia.com/wiki/Community_norm
https://en.wikipedia.org/wiki/Comparison_of_Q&A_sites
http://deeplearning.net/tutorial/deeplearning.pdf
https://stackoverflow.com/help/how-to-ask
https://stackoverflow.com/help/how-to-answer
https://stackoverflow.blog/2018/01/15/thanks-million-jon-skeet/
https://en.wikipedia.org/wiki/Training,_test,_and_validation_sets

Data-Driven Proactive Policy Assurance of Post Quality in Community Q&A Sites 33:21

[11] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265–283.

[12] Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic, Hamid Reza Motahari-Nezhad, Elisa Bertino,
and Schahram Dustdar. 2013. Quality control in crowdsourcing systems: Issues and directions. IEEE Internet Computing
17, 2 (2013), 76–81.

[13] Maik Anderka, Benno Stein, and Nedim Lipka. 2012. Predicting quality flaws in user-generated content: the case of
wikipedia. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information
retrieval. ACM, 981–990.

[14] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018).

[15] Lasse Bergroth, Harri Hakonen, and Timo Raita. 2000. A survey of longest common subsequence algorithms. In String
Processing and Information Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Symposium on. IEEE, 39–48.

[16] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. Journal of machine Learning
research 3, Jan (2003), 993–1022.

[17] Chunyang Chen and Zhenchang Xing. 2016. Mining technology landscape from stack overflow. In Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. ACM, 14.

[18] Chunyang Chen and Zhenchang Xing. 2016. Towards correlating search on google and asking on stack overflow. In
Computer Software and Applications Conference (COMPSAC), 2016 IEEE 40th Annual, Vol. 1. IEEE, 83–92.

[19] Chunyang Chen, Zhenchang Xing, and Lei Han. 2016. Techland: Assisting technology landscape inquiries with insights
from stack overflow. In Software Maintenance and Evolution (ICSME), 2016 IEEE International Conference on. IEEE,
356–366.

[20] Chunyang Chen, Zhenchang Xing, and Yang Liu. 2017. By the Community & For the Community: A Deep Learning
Approach to Assist Collaborative Editing in Q&A Sites. PACMHCI 1, CSCW (2017), 32:1–32:21.

[21] Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised software-specific morphological forms
inference from informal discussions. In Proceedings of the 39th International Conference on Software Engineering. IEEE
Press, 450–461.

[22] Guibin Chen, Chunyang Chen, Zhenchang Xing, and Bowen Xu. 2016. Learning a dual-language vector space for
domain-specific cross-lingual question retrieval. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. ACM, 744–755.

[23] François Chollet et al. 2015. Keras. (2015).
[24] Cicero dos Santos and Maira Gatti. 2014. Deep convolutional neural networks for sentiment analysis of short texts. In

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. 69–78.
[25] Alexander Genkin, David D Lewis, and David Madigan. 2007. Large-scale Bayesian logistic regression for text

categorization. Technometrics 49, 3 (2007), 291–304.
[26] Edouard Grave, Tomas Mikolov, Armand Joulin, and Piotr Bojanowski. 2017. Bag of Tricks for Efficient Text Classifica-

tion. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics,
EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 2: Short Papers. 427–431.

[27] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735–1780.
[28] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neural network architectures for matching

natural language sentences. In Advances in neural information processing systems. 2042–2050.
[29] Meiqun Hu, Ee-Peng Lim, Aixin Sun, Hady Wirawan Lauw, and Ba-Quy Vuong. 2007. Measuring article quality in

wikipedia: models and evaluation. In Proceedings of the sixteenth ACM conference on Conference on information and
knowledge management. ACM, 243–252.

[30] Thorsten Joachims. 1999. Transductive inference for text classification using support vector machines. In ICML, Vol. 99.
200–209.

[31] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent Convolutional Neural Networks for Text Classification..
In AAAI, Vol. 333. 2267–2273.

[32] Jean Lave and Etienne Wenger. 1991. Situated learning: Legitimate peripheral participation. Cambridge university
press.

[33] Guo Li, Haiyi Zhu, Tun Lu, Xianghua Ding, and Ning Gu. 2015. Is It Good to Be Like Wikipedia?: Exploring the
Trade-offs of Introducing Collaborative Editing Model to Q&A Sites. In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing. ACM, 1080–1091.

[34] Yi Lian, Pengfei Liu, Hongyuan Huo, Hu Zhang, Tiejun Cui, and Peng Du. 2016. Inversion of FeO and TiO2 content
using microwave radiance simulation based on Chang-E2 passive microwave radiometer data. In 2016 IEEE International
Geoscience and Remote Sensing Symposium, IGARSS 2016, Beijing, China, July 10-15, 2016. 4319–4322.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

33:22 C. Chen et al.

[35] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016. Recurrent Neural Network for Text Classification with Multi-task
Learning. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI’16). AAAI
Press, 2873–2879.

[36] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hartmann. 2011. Design lessons from the
fastest q&a site in the west. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM,
2857–2866.

[37] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781 (2013).

[38] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Advances in neural information processing systems. 3111–3119.

[39] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. 2017. Feature Visualization. Distill 2, 11 (2017), e7.
[40] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, Michele Lanza, and David Fullerton. 2014. Improving low quality

stack overflow post detection. In Software Maintenance and Evolution (ICSME), 2014 IEEE International Conference on.
IEEE, 541–544.

[41] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning representations by back-propagating
errors. nature 323, 6088 (1986), 533.

[42] Aliaksei Severyn and Alessandro Moschitti. 2015. Twitter sentiment analysis with deep convolutional neural networks.
In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM, 959–962.

[43] Karen Sparck Jones. 1972. A statistical interpretation of term specificity and its application in retrieval. Journal of
documentation 28, 1 (1972), 11–21.

[44] Besiki Stvilia, Michael B Twidale, Les Gasser, and Linda C Smith. 2005. Information quality discussions in Wikipedia.
In Proceedings of the 2005 international conference on knowledge management. Citeseer, 101–113.

[45] Besiki Stvilia, Michael B Twidale, Linda C Smith, and Les Gasser. 2008. Information quality work organization in
Wikipedia. Journal of the Association for Information Science and Technology 59, 6 (2008), 983–1001.

[46] Yanmin Sun, Andrew KCWong, and Mohamed S Kamel. 2009. Classification of imbalanced data: A review. International
Journal of Pattern Recognition and Artificial Intelligence 23, 04 (2009), 687–719.

[47] Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y Ng. 2016. Neural language correction with
character-based attention. arXiv preprint arXiv:1603.09727 (2016).

[48] Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li. 2016. Predicting semantically
linkable knowledge in developer online forums via convolutional neural network. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM, 51–62.

[49] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. 2017. Comparative study of cnn and rnn for natural
language processing. arXiv preprint arXiv:1702.01923 (2017).

[50] Wenpeng Yin and Hinrich Schütze. 2015. Convolutional neural network for paraphrase identification. In Proceedings
of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 901–911.

[51] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. In
Advances in neural information processing systems. 649–657.

Received April 2018; revised July 2018; accepted September 2018

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 33. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Empirical Study of Collaborative Editing in Stack Overflow
	3.1 What has been edited?
	3.2 What kinds of edits have been made?
	3.3 What is the scale of changes that post edits involve?
	3.4 What are the detailed editing operations?

	4 Recommending Post-Body Edits by Convolutional Neural Network
	4.1 Approach overview
	4.2 Collecting the dataset of <origional-post, post-body-edit-type> pairs
	4.3 CNN for Edit Prediction
	4.4 Locating the Key Phrases in Posts to Explain the Edit Prediction
	4.5 Implementation

	5 Experiment
	5.1 Dataset
	5.2 Baselines
	5.3 Evaluation metrics
	5.4 Evaluation Results

	6 Discussion
	6.1 The Impact on Collaborative Editing
	6.2 The Generalization of Our Approach and Findings

	7 Conclusion and Future Work
	Acknowledgments
	References

