
Unsupervised Software-Specific Morphological
Forms Inference from Informal Discussions

Chunyang Chen∗, Zhenchang Xing† and Ximing Wang∗
∗School of Computer Science and Engineering, Nanyang Technological University, Singapore

chen0966@e.ntu.edu.sg; wang0893@e.ntu.edu.sg;
†Research School of Computer Science, Australian National University, Australia

zhenchang.xing@anu.edu.au

Abstract—Informal discussions on social platforms (e.g., Stack
Overflow) accumulates a large body of programming knowl-
edge in natural language text. Natural language process (NLP)
techniques can be exploited to harvest this knowledge base for
software engineering tasks. To make an effective use of NLP
techniques, consistent vocabulary is essential. Unfortunately, the
same concepts are often intentionally or accidentally mentioned in
many different morphological forms in informal discussions, such
as abbreviations, synonyms and misspellings. Existing techniques
to deal with such morphological forms are either designed for
general English or predominantly rely on domain-specific lexical
rules. A thesaurus of software-specific terms and commonly-
used morphological forms is desirable for normalizing software
engineering text, but very difficult to build manually. In this work,
we propose an automatic approach to build such a thesaurus.
Our approach identifies software-specific terms by contrasting
software-specific and general corpuses, and infers morphological
forms of software-specific terms by combining distributed word
semantics, domain-specific lexical rules and transformations,
and graph analysis of morphological relations. We evaluate
the coverage and accuracy of the resulting thesaurus against
community-curated lists of software-specific terms, abbreviations
and synonyms. We also manually examine the correctness of
the identified abbreviations and synonyms in our thesaurus. We
demonstrate the usefulness of our thesaurus in a case study of
normalizing questions from Stack Overflow and CodeProject.

I. INTRODUCTION

Informal discussions on social platforms (such as Stack

Overflow, CodeProject) have become a common means for de-

velopers to share and acquire programming knowledge in nat-

ural language text. Many natural-language-processing (NLP)

based techniques have been proposed to mine programming

knowledge from such informal discussions to assist software

engineering tasks, such as document search [59], [60], extract-

ing API mentions and usage insights [58], [53], recovering

traceability between informal discussions (e.g., duplicate ques-

tion [55]) or between code and informal discussions [42], link-

ing domain-specific entities in informal discussions to official

documents [50] and mining technology landscape [12], [15].

To make an effective use of NLP techniques in these tasks,

a consistently-used vocabulary of software-specific terms is

essential, because NLP techniques assume that the same words

are used whenever a particular concept is mentioned.

As informal discussions are contributed by millions of

users with very diverse technical and linguistic background,

the same concept is often mentioned in many morphological

TABLE I: Morphological forms of visual c++
Term Frequency Annotation
visual c++ 10,294 Standard
msvc 8,477 abbreviation
vc++ 7,154 abbreviation
microsoft visual c++ 1,826 synonym
ms vc++ 295 abbreviation
visual-c++ 110 synonym

forms, including abbreviations, synonyms and misspellings,

intentionally or accidentally [58]. Fig. 1 shows three Stack

Overflow posts that discuss the slash issue of regular expres-

sion when parsing JavaScript. These three posts are marked

as duplicate posts by the Stack Overflow community, because

they discuss the same programming issue. That is, the three

posts are considered as semantically equivalent. However,

when mentioning regular expression and JavaScript, the three

different users use many morphological forms (e.g., regex,

RegExp, regexes), and even the same user uses various forms

in the same post (e.g., JS, JavaScript). As another example,

Table I summarizes the frequencies of various morphological

forms of visual c++ in Stack Overflow discussions. Note that

there are many morphological forms for the same concept and

some forms are used as frequently as the standard one.

The wide presence of morphological forms of the same

concept in informal discussions poses a serious challenge

to informal retrieval. For example, for the query “slash in

regular expressions Javascript”, some posts in Fig. 1 may not

be retrieved due to the morphological forms of JavaScript
and regular expression used in the posts, even though the

three ports are semantically equivalent. Overlooking the close

relationships between various morphological forms of the

same concept may also accentuate data sparsity problems in

applying NLP techniques to mining programming knowledge

in informal discussions, which could negatively affect the

performance of the NLP techniques.

In the NLP domain, a recent trend has seen proposals that

deal with morphology using word embeddings and neural

networks [17], [10], [34]. A recent work by Soricut and

Och [48] exploits the relational regularities exhibited by word

embeddings (e.g., car to cars, dog to dogs) to model prefix-

and suffix-based morphological rules and transformations.

However, these morphology learning techniques in the NLP

domain consider only morphological relations drawn out of

2017 IEEE/ACM 39th International Conference on Software Engineering

DOI 10.1109/ICSE.2017.48

448

2017 IEEE/ACM 39th International Conference on Software Engineering

1558-1225/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE.2017.48

450

(a) post ID=14553203 (b) post ID=5519596 (c) post ID=4726295

Fig. 1: The morphological forms of “regular expression” (blue) and “javascript” (red) in three Stack Overflow posts

linguistic regularities of natural language (e.g., prefix ans

suffix). As shown in Fig. 1 and Table I, morphological forms

of software-specific terms found in informal discussions do

not always follow linguistic regularities of natural language,

e.g., JS and Javascript, RegExp and regular expressions.

In the software engineering domain, the impact of consis-

tent vocabulary on the application of NLP-based techniques

to source code and software documentation has long been

recognized [30], [29], [19], [28], [23]. The focus has been on

expanding identifiers that contain abbreviations and acronyms.

The proposed solutions are predominantly lexically-based ap-

proaches, for example, based on common naming conventions

in software engineering like camel case, or use string edit

distance to measure the similarity between an abbreviation and

its potential expansions. But lexical rules are often unreliable.

For example, both open cv and opencsv are lexically similar

to opencv. However, opencsv is a library for parsing csv
files which is totally irrelevant to opencv (a computer vision

library). To improve the results, most of these approaches

resort to external resources (e.g., English dictionary, dictionary

of IT term and known abbreviations) which are often difficult

to build and maintain, especially domain-specific ones. Some

approaches [51], [56], [26] exploit word frequencies in word

co-occurrence data to rank abbreviation expansions, but none

of them exploit semantic relatedness of words.

In this paper, we propose an automatic approach for in-

ferring morphological forms of software-specific terms in

a large corpus of informal software engineering text. Our

approach first contrasts software engineering text (e.g., Stack

Overflow discussions) against general text (e.g., Wikipedia

documents) to derive a vocabulary of software-specific terms

used in software engineering text. It then combines the latest

development of word embeddings in the NLP domain and

the domain-specific lexical rules developed in the software

engineering domain. As such, we can infer morphological

forms of software-specific terms that not only obey lexical

rules but also are semantically close to each other. Based

on the graph of the morphological relations between pairs of

terms, our approach find groups of morphological forms, each

expressing a distinct concept (see Fig. 5 for examples), similar

to the notion of synset of WordNet [37].

Compared with several community-curated lists of IT terms,

abbreviations and synonyms, our approach automatically infers

software-specific terms and morphological forms that are up-

to-date and actively used in Stack Overflow. In contrast,

community-curated lists contain many out-of-date terms and

rarely-used morphological forms. This result demonstrates

the needs for and the advantage of an approach like ours

for automatic software-specific morphological form inference.

Manual examination of randomly sampled 1,200 abbreviations

and synonyms confirms the high accuracy (81.9%) of our

approach. To demonstrate the usefulness of the inferred mor-

phological forms of software-specific terms for information

retrieval, we use the inferred morphological forms to nor-

malize question text and question metadata (i.e., tags) from

both Stack Overflow and CodeProject. Our results show that

our morphological forms can better improve the consistency

between question text and question metadata, compared with

Porter stemming [45] and WordNet-based lemmatization [7]

that are commonly used for English text normalization. Fur-

thermore, the results show the generality of our morphological

forms across different software engineering corpus.

II. RELATED WORK

When developing software, developers often use abbrevia-

tions and acronyms in identifiers and domain-specific terms

that must be typed in source code and documentation. This

phenomena challenges the effectiveness of NLP-based tech-

niques in exploiting software text. Previous attempts at ex-

panding abbreviations in identifiers have looked at string edit

distance [16], string frequencies from source code [38], [20],

word co-occurrence data [28], or a combination of several

techniques. These approaches inspire the design of lexical

rules and transformations in our approach.

Informal discussions on social platforms (e.g., Stack

Overflow) contains many abbreviations, synonyms and mis-

spellings. Furthermore, informal discussions on social plat-

forms cover a much broader range of programming knowledge,

compared with traditional software text that earlier work has

focused on. These facts could render heuristics developed for

expanding abbreviated identifiers unreliable when applied to

informal discussions. For example, jsp may be regarded as

the abbreviation of javascript, google apps as the synonym of

google apis, or yaml as the synonym of xaml.
To reliably infer morphological forms of software-specific

terms in a broad range of informal discussions, we must

analyze semantic relatedness of software-specific terms and

morphological forms. One way is to develop a software-

specific thesaurus like the WordNet [37] for general text, and

the BioThesaurus [33] for biology domain. In fact, most of

identifier expansion approaches [30], [29], [19], [28], [23] use

in a way or the other external dictionary, such as general

English dictionary, domain-specific ontology and/or a list of

449451

well-known abbreviations to rank the relatedness of abbrevi-

ation and expansions. Although such dictionary is useful for

reasoning word relatedness, it requires significant time and

efforts to build and it is difficult to scale it up and keep it up-to-

date. This is why we do not want our approach to rely on such

dictionary. Indeed, our work presents an automatic approach to

mine a high-quality thesaurus of software-specific terms and

morphological forms by analyzing the text data alone.

Several attempts have been made to automatically infer

semantically related terms in software engineering text [46],

[49], [28], [26], [51], [56]. However, the proposed techniques

make some important assumptions about the text, for example,

relying on project-specific naming or documentation conven-

tion [47], [26], or lexical difference patterns between sen-

tences [56], or the availability of certain contextual information

(e.g., dictionary, question tags) [28], [52], [54]. Such assump-

tions lack the generality for other data. Unlike existing ap-

proaches, we resort to unsupervised word representations (i.e.,

word embeddings) [36] to capture word semantics from a large

corpus of unlabeled software engineering text. Recently, word

embeddings have been successfully applied to various software

engineering problems involving text data, such as document

retrieval [59], [24], software-specific entity recognition [58],

analogical library recommendation [11], [13], prediction of

semantically related posts [55]. Our goal is different: based on

semantically similar software-specific terms, we infer a group

of morphological forms which represent a distinct concept in

informal discussions.

Beyer and Pinzger [8] develop a tag synonym suggestion

tool to generate tag synonyms. Their method is based on

rules derived from the human observations of existing tag

synonym pairs in Stack Overflow. Their follow-up work [9]

uses community detection technique to group tag synonym

pairs into topics, which can assist in the analysis of topic trend

on Stack Overflow. Our approach differs from their work in

two aspects: 1) their work involves only about 3,000 known

tag synonym pairs, while our work identifies over 52,000

software-specific terms and discovers morphological relations

among these terms; 2) their work studies only Stack Overflow

tags, while our work applies the morphological forms mined

from Stack Overflow to normalize the text from CodeProject.

III. THE APPROACH

As shown in Fig. 2, the input to our approach is only

a software-specific corpus (e.g., Stack Overflow text) and

a general corpus (e.g., Wikipedia text). Our approach in-

cludes six main steps: 1) text cleaning and phrase detec-

tion, 2) identifying software-specific vocabulary by contrasting

software-specific and general corpus, 3) learning term seman-

tics by word embedding techniques (e.g., continuous skip-

gram model [36]), 4) extracting semantically related terms as

candidates of morphological forms, 5) discriminating abbre-

viations and synonyms from the list of morphological-form

candidates, and 6) based on a graph of morphological relations,

grouping morphological forms of software-specific terms. The

…

Text cleaning &
Phrase detection

& Split

…

Extract
semantically
related terms

clean text

vector space

Stack Overflow
corpus

Software-specific
vocabulary

Text cleaning &
Phrase detection

Wikipedia
corpus

Discriminate
candidates

CompareContinuous skip-
gram model

Clean text

Abbreviations Synonyms

1 1

23

4

5

Group
synonyms

6

SEthesaurus

Fig. 2: The overview of our approach

output of our approach is a thesaurus of software-specific

terms and their morphological forms (called SEthesaurus).

A. Dataset

Our approach takes a software-specific corpus of plain

text and a general corpus of plain text as inputs. No other

external resources are required. Software specific corpus can

be crawled from domain-specific websites, such as Stack Over-

flow, CodeProject, W3School, MSDN. As we are interested

in discovering morphological forms in informal discussions,

as well as considering the popularity of the website and

the volume of the data, we choose Stack Overflow text as

software-specific corpus in this work. General corpus can be

crawled from domain-agnostic websites, such as Wikipedia,

Quora, Baidu Zhidao, which cover a diverse set of domains.

Considering the quality and the public availability of the data,

we choose Wikipedia text as general corpus in this work.

Wikipedia text is also adopted as general corpus in other

NLP work [39]. It is important to note that our data-analysis

approach is not limited to Stack Overflow and Wikipedia data.

Raw dataset: In this work, the Stack Overflow data

dump [4] we use contains 9,970,064 questions and 16,502,856

answers from July 2008 to August 2015. We collect the

title and body content of all the questions and answers as

the software-specific corpus. The Wikipedia data dump [6]

450452

includes 5,044,130 articles before December 2015. We collect

the page content of all the articles as the general corpus.

B. Preprocessing Input Corpuses

1) Text cleaning: As both datasets are from websites, we

follow the text cleaning steps commonly-used for prepro-

cessing web content [44], [43]. We preserve textual content

but remove HTML tags. For Wikipedia data, we remove all

references from page content. For Stack Overflow, we remove

long code snippets in <pre><code> in the posts, but not

short code elements in <code> in natural language sentences.

We use our software-specific tokenzier [57] to tokenize the

sentences. This tokenizer preserves the integrity of code-

like tokens and the sentence structure. For example, it treats

pandas.DataFrame.apply() as a single token, instead of a

sequence of 7 tokens, i.e., pandas . DataFrame . apply ().

2) Phrase Detection: A significant limitation of priori tech-

niques is that they consider only single word. However, many

software engineering terms are composed of several words

such as ruby on rails, visual studio and depth first search.

These multi-words phrases must be recognized and treated as

a whole in data analysis.

We adopt a simple data-driven and memory-efficient ap-

proach [36] to detect multi-words phrases in the text. In this

approach, phrases are formed iteratively based on the unigram

and bigram counts, using

score(wi, wi+1) =
count(wiwi+1)− δ

count(wi)× count(wi+1)
(1)

The wi and wi+1 are two consecutive words. δ is a discounting

coefficient to prevent phrases consisting of two infrequent

words to be formed. That is, the two consecutive words will

not form a bigram phrase if they appear as a phrase less than

δ times in the corpus. In this work, we experimentally set δ
at 10 and the threshold for score at 15 to achieve a good

balance between the coverage and accuracy of the detected

multi-words phrases.

Our method can find bigram phrases that appear frequently

enough in the text compared with the frequency of each

unigram, such as sql server. But the bigram phrases like this
is will not be formed because each unigram also appear very

frequently separately in the text. Once the bigram phrases are

formed, we repeat the process to detect trigram and fourgram

phrases. In this work, we stop at fourgram phrases, but the

approach can be extended to longer phrases.

Corpus summary: After text cleaning and phrase detection,

we obtain a software-specific corpus from the Stack Overflow

data dump, which has 8,125,944 unique terms (including

single words and multi-words phrases) and 1,757,436,186

tokens (a token is a mention of a term). We obtain a general

corpus from the Wikipedia data dump, which has 26,639,445

unique terms and 2,356,736,103 tokens.

C. Building Software-Specific Vocabulary

Inspired by Park et al’s work [39], we identify software-

specific terms by contrasting the term frequency of a term in

word embedding of ��

�� �� �� ��

��

Fig. 3: The continuous skip-gram model. It predicts the

surrounding words given the center word.

the software specific corpus compared with its frequency in

the general corpus. Specially, we measure the a term’s domain
specificity based on the equation:

domainspecificity(t) =
pd(t)

pg(t)
=

cd(t)
Nd

cg(t)
Ng

(2)

where d and g represents software-specific and general corpus

respectively, and pd(t) and pg(t) is the probability of the term t
in the two corpuses respectively. The probability of a term in a

corpus is calculated by dividing the term frequency by the total

number of tokens N in the corpus. The underlying intuition is

that terms that appear frequently in software-specific corpus

but infrequently in general corpus are software-specific terms.

In this work, we experimentally set 10 as the threshold for

domainspecificity to discriminate software-specific terms.
We observe that some terms that developers commonly use

on Stack Overflow bear little domain-specific meaning. For

example, i is frequently used as variable in loop. Developers

also frequently mention some numeric metrics, such as 1 sec
and 10mb. As these terms do not represent any domain-specific

concepts in natural language discussions, we set stop-term

rules to exclude such meaningless terms, for example, exclud-

ing terms beginning with number or special punctuations like

*, + and >, excluding terms with only one letter (c and r are

preserved as they are programming languages).

D. Learning Term Semantics
To capture the semantics of software-specific terms, we

adopt the continuous skip-gram model [35], [36] which is the

state-of-the-art algorithm for learning distributed word vector

representations (or word embeddings) using a neural network

model. The underling intuition of the algorithm is that words

of similar meaning would appear in similar context. Therefore,

the representation of each word can be defined on the words

it frequently co-occurs with.
As illustrated in Figure 3, the objective of the continuous

skip-gram model is to learn the word representation of each

word that is good at predicting the surrounding words in

the sentence. Formally, given a training sentence of K words

w1, w2, ..., wK , the objective of the continuous skip-gram

model is to maximize the following average log probability:

L =
1

K

K∑

k=1

∑

−N�j�N,j �=0

log p(wk+j |wk) (3)

451453

Fig. 4: An illustration of term representations in the word

embedding space, two-dimensional projection using PCA.

where wk is the central word in a sliding window of the

size 2N + 1 over the sentence, wk+j is the context word

surrounding wk within the sliding window. Our approach

trains the continuous skip-gram model using the software-

specific corpus obtained in Section III-B. We set the sliding

window size N at 5 in this work. That is, the sliding window

contains 10 surrounding terms as the context terms for a given

term in the sentence.

The probability p(wk+j |wk) in Eq. 3 can be formulated as a

log-linear softmax function which can be efficiently solved by

the negative sampling method [36]. After the iterative feed-

forward and back propagation, the training process finally

converges, and each term obtains a low-dimensional real-

valued vector (i.e., word embedding) in the resulting vector

space. Following the experiments in our previous work to learn

word embeddings from Stack Overflow corpus [24], we set the

dimension of word embeddings at 200.

Stack Overflow is time-sensitive due to the evolution of

technology landscape [14]. New terms emerge all the time, and

existing term usage also changes over time. Word embedding

is not good at encoding less frequent terms. If trained using

the entire data, semantics of no-longer-actively-used or newly-

appearing terms may not be well captured. To mitigate this

issue, we split the Stack Overflow corpus into M bulks of

data evenly (M = 11 in this work, about 2.4 million posts

per bulk). For each bulk of data bi (1 ≤ i ≤ M), we apply

the continuous skip-gram model to the data and obtain a

corresponding vector space Vi.

E. Extracting Semantically Related Terms

For each software-specific term t in the software-specific

vocabulary, if the term t is in the vector space Vi (1 ≤ i ≤M),

we find a list of semantically related terms whose term vectors

v(w) are most similar to the vector v(t) in the vector space

using the following equation:

argmax
w∈AVi

cos(v(w), v(t)) = argmax
w∈AVi

v(w) · v(t)
‖v(w)‖‖v(t)‖ (4)

where A is the set of all terms in the vector space Vi excluding

the term t, and cos((v(w), v(t))) is the cosine similarity of the

two vectors.

For a term t ∈ Vi, we select the top-20 most similar terms

in the vector space Vi as the candidate semantically related

terms. As we split the whole corpus into M bulks, we obtain

M vector spaces. Let X be a set of vector spaces that contains

the term t (1 ≤ |X| ≤M). Therefore, we obtain |X| candidate

lists for the term t. These |X| candidate lists could overlap.

We merge the |X| candidate lists into one list and re-rank the

candidate terms w based on the equation:

semsim(w, t) =

∑
Vi∈Y

cosw∈Vi(v(w), v(t))

|Y | × log|X| |Y | (5)

where Y is a set of vector spaces that contain both the

candidate term w and the term t (1 ≤ |Y | ≤ |X|). The

semantic similarity of the candidate term w to the term t
is proportional to the two components: first, the average of

the w’s cosine similarity with the term t in the |Y | vector

spaces, and second, the logarithm of |Y | on the base |X|. In

practice, we add 1 to |X| so that the log base is not 1 and

add 1 to |Y | so that the log will not be 0 when |Y | = 1.

We take the logarithm of |Y | on the base |X| so that the two

components in the equation have comparable contributions.

This equation lessens the importance of some terms w which

may only be highly related to the term t in a small number of

vector spaces. Meanwhile, the less frequently used terms will

not be overwhelmed by the more frequently used terms. We

select the top-20 candidate terms in the reranked list as the

semantically related terms for the term t.
Fig. 4 illustrates the set of semantically related terms for

the three terms angularjs, mac os x and natural language
processing. In the Figure, for the sake of clarity, we list only

the top six most similar terms for the three terms respectively.

These terms are projected into a two-dimensional vector space

using Principal Component Analysis (PCA) [27], a technique

commonly used to visualize high-dimensional vectors. We can

see that semantically related terms are close to each other in

the vector space. Furthermore, we can observe three kinds

of relations between semantically related terms, 1) synonyms,

e.g., (angular, angular.js), (mac os x, macosx); 2) abbrevia-

tions, e.g., (natural language processing, nlp); and 3) general

relatedness, e.g., (max osx, ubuntu linux), (angularjs, ember),

and (nlp, data mining). In this work, we focus on abbreviations

and synonyms (referred to as morphological forms of a term in

this work) among semantically related terms. Generally related

terms could be also useful for recommendation systems, but

they are out of the scope of this paper.

F. Discriminating Synonyms & Abbreviations

We now explain the lexical rules and the string edit distance

we use to discriminate synonyms and abbreviations of a term

from its semantically related terms.

1) Discriminating Morphological Synonyms: In this work,

we define synonyms as pairs of morphological similar terms.

452454

TABLE II: Example Abbreviations and Synonyms

RepTerm Abbreviations Synonyms
applicationcache appcache application cache

android-query aquery android query, androidquery
codeigniter ci codeingiter, codeignitor
algorithm algo, algos algoritms, algoritm

blackberry 10 bb10, bb 10 blackberry10

Some morphological-synonyms can be determined by stem-

ming, such as (object, objects), (rebase, rebasing), but many

other cannot, such as (objective-c, objective c), (mac os
x, macosx), (algorithm, algoritm (a misspelling)), (angular,
angularjs). We observe that morphological-synonyms among

semantically related terms usually can be transformed from

one term to another by a small number of string edits.

Therefore, given a term t and a semantically related term w,

we use string edit distance to determine whether the two terms

are morphological-synonyms.

Levenshtein distance [31] is often used to compute the string

edit distance i.e., the minimum number of single-character

edits (insertions, deletions or substitutions) required to trans-

form one word into another. In this work, we use an enhanced

string edit distance, Damerau-Levenshtein distance [18] (DL

distance) to compute the minimum number of single-character

edits (insert, delete, substitute, and transposition) required to

transform one term to another. DL distance enhances the

Levenshtein distance [31] with the transposition of the two

adjacent characters such as false and flase. Such character

transpositions are a common source of misspellings. DL

distance can more reliably detect such misspellings than the

Levenshtein distance.

The absolute DL distance cannot be directly adopted for

measurement. For example, the DL distance between subdo-
main and sub-domains and the DL distance between jar and

jsp are both 2. The pair (subdomain, sub-domains) is morpho-

logical synonyms, while the pair (jar, jsp) is not. Therefore,

we take into consideration both the absolute distance and

the relative similarity between two term. For the absolute

distance, the DL distance of the two synonyms must not be

greater than 4, for example, the pair (dispatcher.begininvoke,
dispatcher.invoke) will not be regarded as synonyms because

the absolute DL distance between the two terms is 5.

For the relative similarity, we normalize the DL distance

according to the maximum length of the two terms by:

similaritymorph(t, w) = 1− DLdistance(t, w)

max(len(t), len(w))
(6)

The relative similarity indicates that the different parts of the

two synonyms should be relatively small compared with the

same parts of the two terms. In this work, we set the relative

similarity threshold at 1
3 . As a result, the pair (subdomain,

sub-domains) will be recognized as synonyms, but the pair

(jar, jsp) will not, because the first pair is relatively similar

enough, but the second pair is not.

2) Discriminating Abbreviations: If a semantically related

term w does not satisfy the requirement of being a synonym of

a given term t, we further check whether it is an abbreviation

Fig. 5: The synonym graph: the edge represents the synonym

relationship and a connected component represents a group of

synonyms (zoom-in to view the details)

of the given term. We consider the semantically related term w
as an abbreviation of the term t if the they satisfy the following

heuristics-based lexical rules. Similar rules are used to expand

to identify abbreviations [30], [28].

• The characters of the term w must be in the same order

as they appear in the term t, such as (pypi, python pacage
index), (amq, activemq);

• The length of the term w must be shorter than that of the

term t;
• If there are digits in the term w, there must be the same

digits in the term t. For example, vs2010 is regarded as an

abbreviation of visual studio 2010, but vs is not regarded

as an abbreviation of visual studio 2010;

• The term w should not be the abbreviation of only some

words in a multi-words phrase. For example, cmd is

regarded as the abbreviation of command, but not as the

abbreviation of command line.

It is important to note that we discriminate morphological

synonyms and abbreviations from highly semantically related

terms established by the terms’ word embeddings. The above

edit distance and lexical rules alone cannot reliably detect mor-

phological synonyms and abbreviations without considering

semantic relatedness between terms. For example, according

to the above lexical rules, ie can be regarded as an abbreviation

of view. However, once considering semantic similarity, the

term ie is not semantically related to the term view. Thus, ie
will not even be an abbreviation candidate for view. Similarly,

by solely DL distance, the terms (opencv, opencsv) will be

regarded as synonyms. However, in our approach the two terms

are not semantically related, and thus neither of them will be

considered as synonym candidate for the other term.

G. Grouping Morphological Synonyms

We identify synonyms for each term in our software-specific

vocabulary. It is likely that we obtain separate but overlapping

sets of synonyms for different terms. For example. for the

453455

TABLE III: The coverage of terms in SOtag and CPtag datasets

Dataset #Term #CoveredTerm Coverage
SOtag 21950 15385 70.1%
CPtag 2391 1893 79.2%

term timed-out, we obtain {timedout, timed out}, while for the

term timeout, we obtain {timout, timeouts, timed out}. Note

that the term timed out is in the two synonym sets. We group

such overlapping sets of morphological synonyms for different

terms into one set of morphological synonyms in which each

pair of terms can be regarded as morphological synonyms.

To group separate but overlapping sets of morphological

synonyms, we first build a graph of morphological synonyms

based on the synonym relations between terms. Then, we find

connected components in the graph as groups of morphologi-

cal synonyms. Each pair of terms in a group is considered as

synonyms. Figure 5 shows some examples1. For example, the

term timesout is regarded as a synonym of timedout via the

term timed out.
Considering all terms in a connected component as mutual

synonyms, we essentially consider each group of morpholog-

ical synonyms as a distinct concept. We select the term in the

group with the highest usage frequency in Stack Overflow

as the representative term of the concept. For each group

of morphological synonyms (i.e., each concept), we merge

the list of abbreviations of the terms in the group into a

list of abbreviations for the group. Table II presents some

examples of the representative terms and their abbreviations

and synonyms identified by our approach.

IV. EVALUATION OF OUR THESAURUS

In this section, we evaluate the coverage of software-specific

vocabulary and the coverage of abbreviations and synonyms

in our thesaurus SEthesaurus against several community-

created lists of computing-related terms, abbreviations and

synonyms. We also manually examine the correctness of

the identified abbreviations and synonyms. The evaluation

confirms the effectiveness of our approach, meanwhile reveals

potential enhancements of our current approach.

A. The Coverage of Software-Specific Vocabulary

Our thesaurus contains 52,645 software-specific terms. To

confirm whether our thesaurus covers a good range of software

specific terms, we compare the software-specific vocabulary

of our thesaurus against the three community-curated sets of

software-specific terms.

In Stack Overflow, each question is tagged with up to five

terms that describe the programming techniques and concepts

of the question. These tags can be regarded as software-

specific terms. Considering the power law distribution of tag

usage, we consider tags that are used at least 30 times to avoid

rare terms, and we collect in total 21,950 tags (as of August

2015) from over 9-millions questions to check if these tags

are in our vocabulary. In addition, we also collect 2,391 tags

from 263-thousands questions in the other programming Q&A

1For multi-words phrases (e.g., git rebase), we replace space with “ ” for
the visualization clarity.

0.81

0.51

0.41

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4�and�more

Co
ve

ra
ge

Word�number�in�one�tag

Frequency #Tags Coverage
30∼100 9497 54.6%

100∼1000 7555 78.8%
1000∼10000 2463 91.4%
>10000 406 96.6%

Fig. 6: The barchart shows the coverage for tags with different

number of words. The table shows that coverage varies with

tag frequency.

site, CodeProject. For brevity, we refer these two datasets as

SOtag and CPtag.

Our software-specific vocabulary covers 70.1% terms in

the SOtag dataset, and 79.2% terms in the CPtag dataset.

By observing the Stack Overflow and CodeProject tags, we

further find three reasons why some tags are not covered by

our software-specific vocabulary. We explain our observations

using Stack Overflow dataset.

First, some tags contain four or more words, and many

of them contain version number such as google-maps-api-3
and ruby-on-rails-3.2. However, people often do not mention

version numbers when mentioning a technique in discussions.

Therefore, our vocabulary may not contain a specific version

of a technique, but it usually contain the general term for the

technique, such as google maps api, ruby on rails. As shown

in the bar chart of Fig 6, the coverage for the tags with 4 or

more words is low (about 20%). However, for the tags with

3 or less words, the coverage becomes much higher. Second,

as shown in the table of Fig 6, for tags that are used more

than 1000 times, the coverage by our vocabulary can reach

90% or higher. But for tags that are used less than 100 times,

the coverage is only about 54.6%. Note that although less

frequently-used tags (30-1000 times) account for 86% of the

tags, their total times of usage in Stack Overflow account for

only 6.1% of the total tag usage. Therefore, the impact of

missing some less frequently used tags (especially those used

30-100 times) on NLP tasks like information retrieval is minor.

Third, some tags are artificial terms for question tagging, such

as android-asynctask and django-views, but these terms are

rarely used in discussion text.

B. Abbreviation Coverage

Our approach finds 4,773 abbreviations for 4,234 terms (one

term may have several abbreviations) from Stack Overflow

corpus. In Wikipedia, there is a list of computing and IT

abbreviations [1]. The list contains 1,292 full names and each

full name has one abbreviation, except for regular expression
which has two abbreviations. 855 of these 1,292 full names

are in our vocabulary. For those 437 full names that are not in

our vocabulary, they are either long phrases (e.g., context and
dependency injection, advanced data communications control
procedures) or related to other domains such as communica-

tion (e.g., atm adaptation layer, advanced research projects
agency), and thus are not mentioned frequently enough in

454456

Stack Overflow for our approach to identify them as software-

specific terms.

We use the 855 full names and their abbreviations as ground

truth to examine the coverage of the identified abbreviations in

our thesaurus. 751 of these 855 full names have abbreviations

in our thesaurus, and the abbreviations of 739 out of the 751

terms are in the ground truth. That is, the accuracy is 86%.

According to our observation, two reasons result in the missing

abbreviations. First, there are some unusual abbreviations in

the Wikipedia list which we believe developers more like

to use full names instead of the abbreviations, e.g., access
time instead of at. Second, there are limitations with our

abbreviation inference heuristics which cannot find abbrevi-

ations with unique string transformations, such as i18n for

internationalization, xss for cross-site scripting, and w3c for

world wide web consortium. In fact, our approach identifies

these abbreviations as semantically related to their full names.

However, due to their unique string transformation, general

lexical rules cannot determine them as abbreviations.

Compared with the Wikipedia abbreviation list, our dictio-

nary contains much more software-specific terms and more

abbreviations, for example, abc for abstract base class, sso for

single sign-on. Furthermore, our approach can capture multiple

abbreviations for a term. For example, our approach finds 7

abbreviations (regex, reg exp, regexps, regexes, regexp, regexs,
reg-ex) for regular expression in the Stack Overflow text, while

the Wikipedia list include only two of these 7 abbreviations.

C. Synonym Coverage

Our approach identifies 14,006 synonym groups which

contain 38,104 morphological terms2. To examine the cov-

erage and accuracy of the identified synonyms, we compare

our results against the Stack Overflow tag synonyms. Stack

Overflow users collaboratively maintain a list of tag synonym

pairs. By August 2015, there are 3,231 community-approved

synonym pairs [5]. Each pair has a synonym tag and a master

tag. We take these tag synonym pairs as the ground truth.

According to Stack Overflow tag naming convention, multi-

words in a tag are concatenated by “-”, while in plain text,

users more likely write them with spaces. Thus, we replace

“-” in the tag with space for this comparison, for example, the

tag visual-studio will be transformed into visual studio.

For each synonym tag (e.g., videojs) in the ground truth, we

check if it is in a synonym group that our approach identifies,

and if so, we further check if its corresponding master tag (e.g.,

video.js) is also in the synonym group. As Stack Overflow

tag synonyms sometimes involve abbreviations, such as (js,
javascript), we also check if a synonym tag is an abbreviation

of a synonym group and if the master tag is in the correspond-

ing synonym group.

We compare our approach with the two baselines, Wordnet

and SEWordSim. WordNet [37] is a general-purpose lexi-

cal database of English created by lexicographers. WordNet

groups English words into synonym sets (synsets) such as

2Some terms do not have abbreviations or synonyms

TABLE IV: The coverage of synonyms in three methods.

Method #CoveredSynonym #CoveredMaster Accuracy
SEthesaurus 2,316 1,439 62.1%

WordNet 725 218 30.7%
SEWordSim 941 86 9.1%

{small, little, minor}. For each synonym tag in the ground

truth, we check if it is in the WordNet, and if so, we further

check if the master tag is in the same synset as the synonym

tag in the WordNet. SEWordSim [52] is a software-specific

word similarity database that is extracted from Stack Overflow.

For each synonym tag in ground truth, we check if it is in

the SEWordSim database, and if so, we further check if the

master tag is in the list of the top-20 most similar words for

the synonym tag in the SEWordSim database.

Table IV summarizes the results. Overall, 2,316 (71.7%) out

of 3,231 synonym tags are covered by our synonym groups,

while only 725 (22.4%) and 941 (29.1%) are contained in

the WordNet and the SEWordSim database. Out of the 2,316

synonym tags, 1,439 (62.1%) correct synonyms are contained

in our synonym groups. This significantly outperform the ac-

curacy of the WordNet synonyms (30.7%) and the SEWordSim

synonyms (9.1%).

We further explore why our approach misses 877 (2,316-

1,439) tag synonyms. First, some synonym pairs are not mor-

phological which is beyond our scope, such as (sky, flutter) and

(wallet, passbook). Second, the Stack Overflow community

sometimes merge fine-grained concepts into more general ones

as tag synonyms, such as (css-reset, css), (flash-player, flash)

and (worksheet, excel). However, such fine-grained terms and

general terms have different meanings in the discussion text,

and our approach do not regard them as synonyms.

D. Human Evaluation

As shown in the above evaluation, compared with several

community-curated ground truth, our thesaurus contains much

more software-specific terms, and a term in our thesaurus

often has several abbreviations and synonyms. Therefore,

our evaluation against these community-curated ground truth

shows only the correctness of a subset of abbreviations and

synonyms that our approach identifies, but it does not show

whether many other abbreviations and synonyms that are not

included in the ground truth are correct or not.

To verify the general correctness of the abbreviations and

synonyms in our thesaurus, we recruit four participants for the

manual evaluation including 3 final-year undergraduate stu-

dents and one research assistant with master degree majoring

in computer science. They all have several-year programming

experience. We split them into two groups. For each group,

we randomly sample 200 abbreviation pairs and 400 synonym

pairs in our thesaurus for the evaluation. Each participant

independently examines the assigned samples without any

discussions. They judge the correctness of abbreviations and

synonyms based on their knowledge, as well as the Wikipedia

and other available online information. To avoid bias, we count

only pairs which are marked as correct by both participants

455457

in a group as the correct ones. In total, 400 abbreviations and

800 synonyms are manually examined.

The human evaluation confirms that 297 (74.3%) abbre-

viation pairs and 686 (85.8%) synonym pairs are correct.

We further investigate the reasons for those incorrect pairs.

Two reasons result in the wrong abbreviation pairs. First, the

rules described in Section III-F could erroneously classify

terms as abbreviations, such as istream as the abbreviation

of inputstream, or 64-bit os as the abbreviation of 64-bit
windows. These pairs of terms are semantically similar, but

they are not abbreviations. Second, some abbreviation errors

are caused by erroneous synonyms and synonym grouping. For

example, btle is the abbreviation of bluetooth le (bluetooth low

energy). Our approach erroneously recognizes bluetooth le as

the synonym of bluetooth. Consequently, btle is erroneously

regarded as an abbreviation of bluetooth. For synonyms, most

errors are caused by term pairs that are both semantically

and lexically similar, but are not synonyms, such as (mins-
dkversion, maxsdkversion), (notification bar, notification tray)

and (schema.xml, schema.yml). Other synonym errors are also

caused by erroneous synonyms and synonym grouping, similar

to the example of the abbreviation error (btle, bluetooth).

V. USEFULNESS EVALUATION

After evaluating the quality of our thesaurus, we now

demonstrate the usefulness of our thesaurus for text normal-

ization tasks.

A. Background

NLP-based techniques have been widely used to support

software engineering tasks involving text data [22], [40],

[32]. As abbreviations and synonyms are commonly used

in software engineering text, normalizing these abbreviations

and synonyms becomes one of the fundamental steps to

achieve high quality text mining results [30], [29]. Abbre-

viations and synonyms are often referred to as inflected (or

derived) words in natural language processing. The goal of

text normalization is to reduce inflected (or derived) words

to their root form. Techniques developed for general English

text, such as stemming [45] or WordNet lemmatization [7],

are commonly adopted for software engineering text. Some

work proposes domain-specific techniques to normalize source

code vocabulary (e.g., expanding abbreviated identifiers), but

none of existing work examines the normalization of informal

software engineering text on social platforms.

B. Experiment Setup

1) Dataset: We randomly sample 100,000 questions from

Stack Overflow. To further demonstrate the generality of our

thesaurus, we also randomly sample 50,000 questions from

CodeProject3, which is another popular Q&A web site for

computer programming. We preprocess the sampled questions

in the same way as described in Section III-B.

3http://www.codeproject.com/script/Answers/List.aspx??tab=active

Fig. 7: The tags and their different forms in the question

2) Compared Methods: The task is to normalize the title

and content of the sampled questions. We develop a software-

specific lemmatizer powered by our thesaurus for normalizing

abbreviations and synonyms in informal software engineering

text. We compare the performance of our lemmatizer with

the two baseline methods that are commonly used for text

normalization, i.e., Porter stemming [45] and WordNet-based

lemmatization [7]. For our lemmatizer, we reduce abbrevia-

tions and synonyms to their representative terms in our the-

saurus. Porter stemming reduces inflected (or derived) words

to their stems by removing derivational affixes at the end of the

words. WordNet-based lemmatization reduces different forms

of a word to their lemma based on WordNet synset (i.e., set

of synonyms created by highly trained linguists).
3) Ground Truth and Evaluation Metrics: We adopt ques-

tion tags as the ground truth to evaluate the effectiveness of

the text normalization. Question tags can be considered as

metadata of question text. We normalize question tags in the

same ways as we normalize question title and content using the

three compared methods. Then, we measure the effectiveness

of a text normalization method by how much percentage of

tags appear in question title and content before and after text

normalization. We take an average of the percentage over all

the sampled questions. Essentially, we investigate how much

text normalization can make question texts more consistent

with question metadata. Fig. 7 shows an example. Before text

normalization, only one of the three tags (.net) appears in

the question title and content. After normalization using our

lemmatizer, all 3 tags appear in the question title and content.

C. Results

As shown in Fig. 8, without text normalization, on average

only 55.5% and 54.0% tags appear in the title and content

of the sampled Stack Overflow and CodeProject questions,

respectively. This indicates that the consistency between ques-

tion texts and question metadata is low. With text normaliza-

tion by our lemmatizer, the percentage is boosted to 79.3%

for the sampled Stack Overflow questions, and 68.7% for

the sampled CodeProject questions. Although Porter stemming

and WordNet-based lemmatization can also improve the con-

sistency between question texts and question metadata, the

improvement in percentage is much smaller or only marginally,

compared with our lemmatizer.

The Porter stemming can only find words with derivational

affixes such as (upload, uploaded) or singular and plural forms

456458

0.55
0.48

0.68

0.53

0.61

0.51

0.79

0.68

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Stack Overflow CodeProject

Ta
g

Co
ve

ra
ge No Normalization

Porter Stemming

 WordNet Lemmatization

SEthesaurus

Fig. 8: The average percentage of tags appearing in question

text by different normalization methods

such as (script, scripts). The WordNet-based lemmitization

can recognize more synonyms based on WordNet synset, such

as (os, operating system). However, WordNet is a general

thesaurus and lacks many software-specific terms. In contrast,

our thesaurus is mined from the vast amount of software engi-

neering text and contain a much richer set of software-specific

terms and their abbreviations and synonyms. Furthermore,

our thesaurus can recognize complicated synonyms, such as

(multithreading, multi-thread) and (windows, windwos) that

are difficult to find using Porter stemming and WordNet

lemmatization. Therefore, our domain-specific thesaurus is

more suitable for software-specific text normalization than

general stemming methods or general English thesaurus.

VI. TOOL SUPPORT

We build a simple demonstration website4 for the commu-

nity to access to our thesaurus. In the website, users can search

for software-specific terms and find their abbreviations and

synonyms. As our thesaurus mainly aims at automatic text

mining tasks, we also release the API (similar to WordNet

API) to access to the information in the thesaurus.

VII. DISCUSSION

Finally, we discuss the potential enhancement of our ap-

proach and some extension applications.

A. Enhancements of Our Approach

Our evaluation reveals some limitations of our approach

which could be enhanced in the future. First, our approach

may miss some long but infrequent phrases (e.g., context and
dependency injection), common-word software-specific terms

(e.g., seahorse), and software-specific terms that are neither

frequently mentioned in the software-specific corpus nor in the

general corpus. To address these issues, we could incorporate

semi-supervised methods for software-specific named entity

recognition proposed in our recent work [57], [58].

Second, our approach currently learns and analyzes term

semantics. However, we find that the same term can have

different senses in different contexts. For example, the term

post is both an abbreviation of power on self test and a normal

term that refers to online post. Furthermore, a term can be the

abbreviation of several terms, for example, bcp for bulk copy

4https://se-thesaurus.appspot.com/

TABLE V: Misspelling examples in our thesaurus

Term Misspellings
ubuntu ubunutu
jquery jqeury, jquey
eclipse eclispe, eclise, eclips, eclipe
android anroid, andoid, andriod, adroid, andorid

bootstrap bootstarp, bootstap, boostrap, bootsrap
postgresql postgressql, postresql, posgresql, postgesql

and best current practice, apt for advanced packaging tool and

annotation processing tool. To disambiguate context-sensitive

term semantics, we need to learn term semantics at the sense

level [25] i.e., considering the context around the term.

B. Domain-Specific Spelling Checking

While developers write natural language documents, such

as comments, documentations, blogs and Q&A posts, it is

very natural that misspellings occur. In fact, a large portion

of morphological synonyms that our approach identifies in

Stack Overflow text are misspellings (see Table V for examples

in our thesaurus). To avoid misspellings, developers can run

spell checking in their editors or IDEs. Some researchers [41],

[21] also use spell checkers (e.g., Aspell [2], Hunspell [3]) to

pre-processing software engineering text. However, existing

spell checkers are trained for general English text, without the

knowledge about software-specific terms and their common

misspellings such as the examples in Table V.

Unlike Beyer and Pinzger’s work [8] in which they ob-

serve synonym transformation rules manually from a small

dataset, we could extend our approach with neural network

techniques [17], [10], [34] to train a software-specific spelling

checking tool based on the large-scale dataset. This domain-

specific spell checker can help developers correct misspellings

while writing a document or help researchers normalize soft-

ware engineering text for high quality text mining [41].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present an automatic approach for min-

ing a thesaurus of software-specific terms and commonly-

used morphological forms from informal software engineering

discussions. Our evaluation shows that our thesaurus cov-

ers a large set of software-specific terms, abbreviations and

synonyms with high accuracy. In a text normalization task,

we demonstrate that our thesaurus can significantly improve

the consistency between question text and question metadata,

compared with general stemming and lemmatization methods.

In the future, we will extend our thesaurus into a software-

specific dictionary for software engineering text (simile to

WordNet) which can enable many applications in software

engineering, such as domain-specific spelling checking, rec-

ommendation of semantically related techniques, software-text

cleaning, etc.

ACKNOWLEDGMENT

The authors would like to thank Prof Yang Liu for his

discussions and support. Due to the author limit policy, we

cannot include him as a co-author of this work. This work was

partially supported by MOE AcRF Tier1 Grant M4011267.020

and M4011448.020.

457459

REFERENCES

[1] Abbreviations in wikipedia. https://en.wikipedia.org/wiki/List of
computing and IT abbreviations. Accessed: 2016-06-20.

[2] Gnu aspell. http://aspell.net/.

[3] Hunspell. https://hunspell.github.io/.

[4] Stack overflow data dump. https://archive.org/details/stackexchange.
Accessed: 2016-02-20.

[5] Tag synonyms in stack overflow. http://stackoverflow.com/tags/
synonyms. Accessed: 2016-06-20.

[6] Wikipedia data dump. https://dumps.wikimedia.org/enwiki/latest/. Ac-
cessed: 2016-02-20.

[7] Wordnet lemmatization. http://www.nltk.org/ modules/nltk/stem/
wordnet.html.

[8] S. Beyer and M. Pinzger. Synonym suggestion for tags on stack overflow.
In Proceedings of the 2015 IEEE 23rd International Conference on
Program Comprehension, pages 94–103. IEEE Press, 2015.

[9] S. Beyer and M. Pinzger. Grouping android tag synonyms on stack
overflow. In Proceedings of the 13th International Workshop on Mining
Software Repositories, pages 430–440. ACM, 2016.

[10] J. A. Botha and P. Blunsom. Compositional morphology for word
representations and language modelling. In ICML, pages 1899–1907,
2014.

[11] C. Chen, S. Gao, and Z. Xing. Mining analogical libraries in q&a
discussions–incorporating relational and categorical knowledge into
word embedding. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), volume 1,
pages 338–348. IEEE, 2016.

[12] C. Chen and Z. Xing. Mining technology landscape from stack overflow.
In Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, page 14. ACM,
2016.

[13] C. Chen and Z. Xing. Similartech: automatically recommend analogical
libraries across different programming languages. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, pages 834–839. ACM, 2016.

[14] C. Chen and Z. Xing. Towards correlating search on google and asking
on stack overflow. In 40th IEEE Computer Society International Confer-
ence on Computers, Software & Applications (COMPSAC), volume 1,
pages 83–92. IEEE, 2016.

[15] C. Chen, Z. Xing, and L. Han. Techland: Assisting technology landscape
inquiries with insights from stack overflow. In Proceedings of the 32nd
IEEE International Conference on Software Maintenance and Evolution,
2016.

[16] A. Corazza, S. Di Martino, and V. Maggio. Linsen: An efficient approach
to split identifiers and expand abbreviations. In Software Maintenance
(ICSM), 2012 28th IEEE International Conference on, pages 233–242.
IEEE, 2012.

[17] M. Creutz and K. Lagus. Unsupervised morpheme segmentation and
morphology induction from text corpora using morfessor 1.1. Publica-
tions Comput. Inf. Sci., Helsinki Univ. Technol., Tech. Rep. A, 81:2005,
2005.

[18] F. J. Damerau. A technique for computer detection and correction of
spelling errors. Communications of the ACM, 7(3):171–176, 1964.

[19] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol. Can better
identifier splitting techniques help feature location? In Program Com-
prehension (ICPC), 2011 IEEE 19th International Conference on, pages
11–20. IEEE, 2011.

[20] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker. Mining source code
to automatically split identifiers for software analysis. In 2009 6th IEEE
International Working Conference on Mining Software Repositories,
pages 71–80. IEEE, 2009.

[21] A. C. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh.
Inconsistency handling in multiperspective specifications. Software
Engineering, IEEE Transactions on, 20(8):569–578, 1994.

[22] M. Gegick, P. Rotella, and T. Xie. Identifying security bug reports via
text mining: An industrial case study. In Mining software repositories
(MSR), 2010 7th IEEE working conference on, pages 11–20. IEEE, 2010.

[23] L. Guerrouj, P. Galinier, Y.-G. Guéhéneuc, G. Antoniol, and M. Di Penta.
Tris: A fast and accurate identifiers splitting and expansion algorithm. In
2012 19th Working Conference on Reverse Engineering, pages 103–112.
IEEE, 2012.

[24] C. Guibin, C. Chen, Z. Xing, and X. Bowen. Learning a dual-language
vector space for domain-specific cross-lingual question retrieval. In 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE/ACM, 2016.

[25] Y. HaCohen-Kerner, A. Kass, and A. Peretz. Combined one sense
disambiguation of abbreviations. In Proceedings of the 46th Annual
Meeting of the Association for Computational Linguistics on Human
Language Technologies: Short Papers, HLT-Short ’08, pages 61–64,
Stroudsburg, PA, USA, 2008. Association for Computational Linguistics.

[26] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker. Automati-
cally mining software-based, semantically-similar words from comment-
code mappings. In Proceedings of the 10th Working Conference on
Mining Software Repositories, pages 377–386. IEEE Press, 2013.

[27] I. Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[28] D. Lawrie and D. Binkley. Expanding identifiers to normalize source
code vocabulary. In Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, pages 113–122. IEEE, 2011.

[29] D. Lawrie, D. Binkley, and C. Morrell. Normalizing source code
vocabulary. In 2010 17th Working Conference on Reverse Engineering,
pages 3–12. IEEE, 2010.

[30] D. Lawrie, H. Feild, and D. Binkley. Extracting meaning from abbrevi-
ated identifiers. In Seventh IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2007), pages 213–222.
IEEE, 2007.

[31] V. I. Levenshtein. Binary codes capable of correcting deletions, in-
sertions, and reversals. In Soviet physics doklady, volume 10, pages
707–710, 1966.

[32] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. Mining
concepts from code with probabilistic topic models. In Proceedings
of the twenty-second IEEE/ACM international conference on Automated
software engineering, pages 461–464. ACM, 2007.

[33] H. Liu, Z.-Z. Hu, J. Zhang, and C. Wu. Biothesaurus: a web-based
thesaurus of protein and gene names. Bioinformatics, 22(1):103–105,
2006.

[34] T. Luong, R. Socher, and C. D. Manning. Better word representations
with recursive neural networks for morphology. In CoNLL, pages 104–
113, 2013.

[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111–
3119, 2013.

[37] G. A. Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39–41, 1995.

[38] E. Murphy-Hill, A. P. Black, D. Dig, and C. Parnin. Gathering
refactoring data: a comparison of four methods. In Proceedings of the
2nd Workshop on Refactoring Tools, page 7. ACM, 2008.

[39] Y. Park, S. Patwardhan, K. Visweswariah, and S. C. Gates. An empirical
analysis of word error rate and keyword error rate. In INTERSPEECH,
pages 2070–2073, 2008.

[40] G. Petrosyan, M. P. Robillard, and R. De Mori. Discovering information
explaining api types using text classification. In Proceedings of the
37th International Conference on Software Engineering-Volume 1, pages
869–879. IEEE Press, 2015.

[41] L. Pollock, K. Vijay-Shanker, E. Hill, G. Sridhara, and D. Shepherd.
Natural language-based software analyses and tools for software main-
tenance. In Software Engineering, pages 94–125. Springer, 2013.

[42] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk: Stack overflow
in the ide. In Proceedings of the 2013 International Conference on
Software Engineering, pages 1295–1298. IEEE Press, 2013.

[43] S. P. Ponzetto and M. Strube. Deriving a large scale taxonomy from
wikipedia. In AAAI, volume 7, pages 1440–1445, 2007.

[44] S. P. Ponzetto and M. Strube. Knowledge derived from wikipedia for
computing semantic relatedness. J. Artif. Intell. Res.(JAIR), 30:181–212,
2007.

[45] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980.

[46] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker. Using
natural language program analysis to locate and understand action-
oriented concerns. In Proceedings of the 6th international conference
on Aspect-oriented software development, pages 212–224. ACM, 2007.

458460

[47] D. Shepherd, L. Pollock, and K. Vijay-Shanker. Towards supporting on-
demand virtual remodularization using program graphs. In Proceedings
of the 5th international conference on Aspect-oriented software devel-
opment, pages 3–14. ACM, 2006.

[48] R. Soricut and F. Och. Unsupervised morphology induction using word
embeddings. In Proc. NAACL, 2015.

[49] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker. Identifying
word relations in software: A comparative study of semantic similarity
tools. In Program Comprehension, 2008. ICPC 2008. The 16th IEEE
International Conference on, pages 123–132. IEEE, 2008.

[50] S. Subramanian, L. Inozemtseva, and R. Holmes. Live api documenta-
tion. In Proceedings of the 36th International Conference on Software
Engineering, pages 643–652. ACM, 2014.

[51] Y. Tian, D. Lo, and J. Lawall. Automated construction of a software-
specific word similarity database. In Software Maintenance, Reengineer-
ing and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution
Week-IEEE Conference on, pages 44–53. IEEE, 2014.

[52] Y. Tian, D. Lo, and J. Lawall. Sewordsim: Software-specific word
similarity database. In Companion Proceedings of the 36th International
Conference on Software Engineering, pages 568–571. ACM, 2014.

[53] C. Treude and M. P. Robillard. Augmenting api documentation with
insights from stack overflow. In Proceedings of the 38th International
Conference on Software Engineering, pages 392–403. ACM, 2016.

[54] S. Wang, D. Lo, and L. Jiang. Inferring semantically related software
terms and their taxonomy by leveraging collaborative tagging. In Soft-
ware Maintenance (ICSM), 2012 28th IEEE International Conference
on, pages 604–607. IEEE, 2012.

[55] B. Xu, D. Ye, Z. Xing, X. Xia, C. Guibin, and L. Shanping. Predicting
semantically linkable knowledge in developer online forums via convo-
lutional neural network. In 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE/ACM, 2016.

[56] J. Yang and L. Tan. Swordnet: Inferring semantically related words
from software context. Empirical Software Engineering, 19(6):1856–
1886, 2014.

[57] D. Ye, Z. Xing, C. Y. Foo, Z. Q. Ang, J. Li, and N. Kapre. Software-
specific named entity recognition in software engineering social content.
In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), volume 1, pages 90–101. IEEE,
2016.

[58] D. Ye, Z. Xing, C. Y. Foo, J. Li, and N. Kapre. Learning to extract api
mentions from informal natural language discussions. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), volume 1, pages 90–101. IEEE, 2016.

[59] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu. From word embeddings
to document similarities for improved information retrieval in software
engineering. In Proceedings of the 38th International Conference on
Software Engineering, pages 404–415. ACM, 2016.

[60] Y. Zou, T. Ye, Y. Lu, J. Mylopoulos, and L. Zhang. Learning to rank
for question-oriented software text retrieval (t). In Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on,
pages 1–11. IEEE, 2015.

459461

