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ABSTRACT
Establishing API mappings between libraries is a prerequisite step
for library migration tasks. Manually establishing API mappings is
tedious due to the large number of APIs to be examined, and existing
methods based on supervised learning requires unavailable already-
ported or functionality similar applications. Therefore, we propose
an unsupervised deep learning based approach to embed both API
usage semantics and API description (name and document) seman-
tics into vector space for inferring likely analogical API mappings
between libraries.We implement a proof-of-concept website Simila-
rAPI (https://similarapi.appspot.com) which can recommend ana-
logical APIs for 583,501 APIs of 111 pairs of analogical Java libraries
with diverse functionalities. Video: https://youtu.be/EAwD6l24vLQ
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1 INTRODUCTION
Third-party libraries are an integral part of many software sys-
tems [27]. When a library that a software project currently uses
is no longer under active development, or lacks certain desired
features, or cannot satisfy performance requirements, developers
of the project often need to migrate the project from the currently-
used library to the others [26]. This migration activity is referred
to as library migration. To complete a library migration task, the
developer needs to first find a good analogical library that provides
comparable features as the currently-used library. In this setting,
we refer to the currently-used library as source library, and the
analogical library as target library. Then, developers must establish
the mappings of analogical APIs between libraries that implement
the same or similar feature. Although analogical libraries can be
effectively recommended [3], establishing analogical API mappings
between libraries lack effective support. Without the knowledge
of analogical API mappings, it is impossible to port the code from
using the source library APIs to using the target library APIs.
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Some API mapping databases have been created by domain ex-
perts well versed in the source and target APIs, but only for a few
source/target platform pairs, such as Android, iOS and Symbian
Qt to Windows 7 [2]. For an arbitrary pair of source and target
libraries, developers have to manually find analogical APIs between
the two libraries by studying and comparing API semantics. Usu-
ally, there are two types of API semantics to investigate, i.e., source
codes that demonstrate the usage of APIs (API usage semantics), and
API description that explain the API functionalities (API description
semantics). This investigation process is known to be tedious and
error-prone [14], especially when developers are unfamiliar with
the target library and the target library has tons of APIs [4, 6].

Having an automatic technique to create a database of likely
API mappings between analogical source-target libraries can sig-
nificantly ease the task. However, existing techniques have two
fundamental limitations. First, existing techniques [17, 24, 29] re-
quire already ported or functionality similar applications for infer-
ring likely API mappings between libraries. As a library often has
several analogical libraries [3, 5, 8], it is unlikely to have already
ported or functionality similar applications for an arbitrary pair
of analogical source-target libraries. Second, some techniques [25]
measure the textual similarity of the source and target API de-
scriptions (names/documents) to discover likely API mappings.
However, the descriptions of even the equivalent APIs written by
different developers may share few words in common (i.e., have
lexical gap). For example, two similar APIs may have very different
descriptions such as “Clear all entries in the MDC of the underlying
implementation” and “Remove all values from the MDC”. Traditional
IR methods are not robust to recognize such API mappings when
API names/documents have lexical gaps.

To overcome the above limitations in creating the database of
likely API mappings for pairs of analogical source-target libraries,
we present an approach that exploits unsupervised deep learning
techniques to embed API usage semantics and API description
semantics to infer likely API mappings between analogical source-
target libraries. In this work, we focus on API mappings between
a source API method and a target API method. Our key techni-
cal contributions are two-fold: 1) Embedding API usage semantics
by unsupervised API and library embeddings. 2) Embedding API
name/description semantics by unsupervised RNN embedded sen-
tence vectors. Based on these three different kinds of embedding, we
combine them for inferring analogical APIs across similar libraries.

As a proof of concept, we choose 97 Java libraries and their
analogical Java libraries (in total 111 pairs of analogical source-
target libraries and 583,501 API methods) from the knowledge base
of analogical libraries [3]. These libraries support a diverse set of
functionalities, including testing, data visualization, GUI develop-
ment, information retrieval, etc. We discover likely analogical APIs
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Figure 1: The overall framework of our approach

between these pairs of analogical libraries and build a web appli-
cation SimilarAPI (https://similarapi.appspot.com1) for searching
analogical APIs across these pairs of libraries.

By recording and analyzing the site visiting statistics via Google
Analytics, it shows that more than 800 users have visited our site.
From the visiting logs, we also observe some usage patterns of
our website which can help address different information needs of
developers in searching for analogical APIs. These quantitative and
qualitative analysis demonstrate the usefulness of our tool.

Our contributions are listed as follows:
• We present the first reliable unsupervised approach to incor-
porate both API usage and description similarities to create
the database of likely analogical API mappings.

• We build a large database of analogical API mappings for 111
pairs of analogical libraries and implement a web application
for accessing the database.

2 APPROACH
Figure1 displays the overall approach including an unsupervised
training phase and an inference phase. In the training phase, we
crawl GitHub repositories and extract API call sequences, method
names and comments from source code. We consider APIs as words
and apply continuous skip-gram model to a corpus of API call se-
quences to learn API usage embeddings. Furthermore, based on
the corpus of method names/comments, we train a name/comment
skip-thoughts model [20] for obtaining the name/comment embed-
ding. In the inference phase, our approach creates a database of
likely API-method mappings between analogical libraries by com-
bining API usage, name and document similarities. The detailed
approach can be seen in our previous paper [9].

2.1 Encoding API Usage Similarity
Given the crawled GitHub projects, we extract API call sequences
for each file. Note that we extract fully-qualified names from the
crawled code using a partial program analysis (PPA) [13] tool for
Java. We consider an API call sequence as a sentence, and each
API method as a word. Studies [10, 12, 21] show that word embed-
dings are able to capture rich semantic and syntactic properties of
software-specific words for measuring word similarity. Therefore,
we develop a word-embedding based method [11, 19] to embed

1As this website is host on Google Cloud, you may not visit our site if you cannot
access to Google.

API usage semantics in a vector space based on the use of an API,
together with other APIs (not necessarily from the same library),
in API call sequences extracted from the code. Relational similarity
between pairs of words is a metric for reasoning about analogical
words [22, 23]. Chen et al [3] shows that library-language relational
similarity (e.g., “NLTK:Python” and “OpenNLP:Java”) performs bet-
ter in inferring analogical libraries than directly using the cosine
similarity of libraries, based on the tag embeddings learned from
short and diverse question tag sequences. The obtained API vectors
are then used to quantify API usage similarity between a source
API method and a target API method.

We find that this observation also extends to analogical APIs
between libraries. Therefore, in our approach, we use API-library
relational similarity to measure the usage similarity between an
API (as ) in the source library (Ls ) and an API (at ) in the target
library (Lt ). This relational similarity can be computed by vector
arithmetic as follows:

simuse = cos(uvec(as ) − uvec(Ls ),uvec(at ) − uvec(Lt )) (1)

whereuvec() (usage vector) is API embedding or library embedding,
vector offset of API embedding and library embedding reflects
the API-library relation (line) in the vector space, and relational
similarity is computed as cosine similarity between the two vector
offsets (i.e., the angle between the two API-library lines).

2.2 Encoding API Name & Description
Similarity

We adopt skip thoughts [20] (an unsupervised RNN model) to en-
code API names (or documents) in a vector space. Skip-thoughts
model is a recently proposed unsupervised RNN model that en-
codes the semantics of a sentence to vector by not only the words
in a sentence, but also the surrounding sentences of the sentence
in a document. It consists of an RNN encoder and two RNN de-
coders [7, 16, 28]. The encoder encodes words of a sentence to a
sentence vector. Two decoders decode this sentence vector to the
previous sentence and the next sentence in a document respectively.

As the name (or document) of an API describes the functionality
of the API, the training code-related text should contain sentences
serving the similar purpose. Therefore, we extract a method-name
corpus and amethod-comment corpus from the source code crawled
from Github, which is used to train a method-name skip-thought
model and a method-comment skip-thought model, respectively.
According to the learning mechanism of skip-thoughts model, the
training corpus should contain documents with a sequence of sen-
tences. In this work, we construct a method-name (or method-
comment) document for each code file, because a code file should
group a set of closely-related methods. Inspired by the studies on
the naturalness of source code [18], we order the names (or com-
ment sentences) extracted from methods declared in a code file in
the same order as method declarations. The intuition is that de-
velopers declare methods in an order according to certain natural
relatedness amongmethods, and this natural relatedness is reflected
in the order of the names (or comments) describing the methods’
functionalities. That is, the surrounding names (or comments) of a
name (or comment) provide the context to embed the semantics of
the given name (or comment). After the training of skip-thought
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model, we can obtain the name and document similarity of any two
APIs across different libraries.

2.3 Building Analogical-API Knowledge Base
Given a source library, we search the knowledge base of analogical
libraries [3] to find its analogical library i.e., target library. We
determine the likelihood of an API method in the source library and
an API method in the target library being analogical by combining
three information similarities of the two APIs, i.e., the similarity
of API names (simname ), API documents (simdoc ), and API usage
(simusaдe ) into an overall similarity score:

Sim(as ,at ) = α × simusaдe (as ,at ) + β × simdoc (as ,at )

+γ × simname (as ,at )
(2)

where α, β,γ are the weight parameters in (0, 1), and we make
α + β +γ = 1 so that the final similarity value is of the range [−1, 1]
where 1 is the most similar and -1 is the opposite. These weight
parameters are tuned using a small evaluation set of analogical API
mappings in the tool implementation.

For each API method in the source library, we rank the API meth-
ods in the target library by their overall similarity with the given
source API. Then, we obtain a knowledge base of likely analogical
API mappings for a pair of analogical source-target libraries.

3 TOOL SUPPORT
To train our skip-thought model and API embedding model, we
downloaded 135,127 Java projects from Boa dataset [15]. In our
work, we remove few-star (< 10) or deleted projects and obtain
135,127 Java projects as our dataset. These projects contain 2,058,240
source-code files. We extract API call sequences from the crawled
code using a partial program analysis (PPA) [13] tool for Java. We
collect a corpus of 10,554,900 API call sequences which includes
952,829 unique APIs for learning API embeddings. We use the
Eclipse JDT compiler [1] to extract method names and comments
(Javadoc format) from the crawled code. We obtain a corpus of
26,622,034 method names and a corpus of 2,798,837 comments for
training the method-name and method-comment skip-thoughts
models respectively. Note that method declarations always have a
name, but they may not have comment and we also ignore those
with irregular comments. Based on trained skip-thought and API
embedding models, we then infer analogical APIs between 111
pairs2 of analogical Java libraries like (gson & jackson), (testng &
junit), (pdfbox & itext).

We implement our approach in an analogical-APIs searching
web application3 based on the knowledge base of likely analogical
APIs between 111 pairs of analogical Java libraries. We host this
web application on Google Cloud for easier access for developers.
Figure 2 shows a screen shot of our web application. When search-
ing an API, our tool will first return the documentation of this API,
and also recommend a list of analogical APIs (with the similarity
to the given library above the minimal similarity threshold) across
the equivalent libraries in Java. In the current implementation, Sim-
ilarAPI presents up to 5 APIs with the highest similarity for each
similar library, as developers are unlikely to look through a long

2All pairs can be seen in https://similarapi.appspot.com/allLibPair.html
3https://similarapi.appspot.com

Figure 2: The screenshot of our site

list of recommendations. Note that listing up to 5 similar APIs is
only an implementation decision, not a limitation of our approach.

4 EVALUATION
The accuracy and generality of extracted analogical API across
different libraries are well documented in our previous paper [9]. In
this work, we report the visiting logs of our site by Google Analytics,
and demonstrate one typical usage scenario of our SimilarAPI.

4.1 Tool Usage
After implementing our site, we release it to the public. Accord-
ing to the Google Analytics about the site traffic, more than 800
users from 75 countries visit our site, from Jul 2018 to Nov 2019.
These users visit 1,270 pages of our site with 1.44 pages in aver-
age for each session4. Note that most users visit our site from the
Google Search with very specific query, so the average visit page
in each session will be low as they can get what they want in the
first several pages. 47 (5.8%) of 802 users are returning users, in-
dicating users’ consistent interest in our tool. By analyzing the
detailed visiting log, we find that the top visited pages are about the
alternatives of API org.apache.commons.io.FileUtils.writeStringToFile(),
org.apache.log4j.MDC.put(), com.google.gson.JsonElement.getAsBigInteger(),
org.apache.pdfbox.pdmodel.font.PDFont.getFontDescriptor(), etc. These
real-world usage of our site demonstrate the usefulness of our work.

4.2 Usage Scenario
After quantitative analysis of the website visit data, we further
qualitatively analyze user navigation patterns in our site. The pri-
mary goal of our tool is to help developers find analogical API in a
specific library to that of another similar library. For example, one
developer is going to migrate her code from using gson to jackson
due to various reasons. When the developer is revising the code,
she is searching alternatives to com.google.gson.JsonArrary.size() in
our site. As seen in Figure 2, there are five most similar APIs listed
with corresponding similarity score annotated. She can click the
first recommendation for more documentations to see if the first
one com.fasterxml.jackson.databind.JsonNode.size() may be the one that
she needs. Once she is not sure, she can take the result from our
recommendation as the seed to further search more information in
that documents or refer to the search engine.

4These visits are not triggered by the robots as the most crawlers cannot activate the
Javascript code snippet embedded in the page for Google Analytics
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Figure 3: The visit history of our site from Google Analytics

Apart from jackson, we also provide alternative APIs in another
similar library org.json. For example, the first recommended API
org.json.simple.JSONArrary.size() may also satisfy developers’ need.
Note that although developers may not intend to migrate to that
library, she may find that many APIs have exact mappings between
gson and org.json in our sites which inspire her to reconsider which
similar library for her project to migrate to.

5 CONCLUSION & FUTUREWORK
This paper presents a novel tool for recommending likely analogical
API mappings between third-party libraries. Our approach incorpo-
rate three kinds of information modeling API usage, API name and
documents for inferring API mappings. Our approach is the first
attempt to incorporate all API usage, name and document similari-
ties for inferring likely analogical APIs of third-party libraries. To
evaluate our approach, we build the largest database of analogical
APIs for 583,501 APIs of 111 pairs of analogical Java libraries.

In the future, we will extend our work to one-to-many and many-
to-many API mappings which complements our current one-to-
one mapping. Furthermore, we will extend our current tool to
recommend analogical APIs between libraries written in different
programming languages, by developing API-call-sequences and
code-related-text extractors for different languages.
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