JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Mining Likely Analogical APls across Third-Party
Libraries via Large-Scale Unsupervised API
Semantics Embedding

Chunyang Chen, Zhenchang Xing, Yang Liu, Kent Ong Long Xiong.

Abstract—Establishing APl mappings between third-party libraries is a prerequisite step for library migration tasks. Manually
establishing APl mappings is tedious due to the large number of APIs to be examined. Having an automatic technique to create a
database of likely API mappings can significantly ease the task. Unfortunately, existing techniques either adopt supervised learning
mechanism that requires already-ported or functionality similar applications across major programming languages or platforms, which
are difficult to come by for an arbitrary pair of third-party libraries, or cannot deal with lexical gap in the API descriptions of different
libraries. To overcome these limitations, we present an unsupervised deep learning based approach to embed both APl usage
semantics and AP description (name and document) semantics into vector space for inferring likely analogical APl mappings between
libraries. Based on deep learning models trained using tens of millions of API call sequences, method nhames and comments of 2.8
millions of methods from 135,127 GitHub projects, our approach significantly outperforms other deep learning or traditional information
retrieval (IR) methods for inferring likely analogical APIs. We implement a proof-of-concept website (https://similarapi.appspot.com)
which can recommend analogical APIs for 583,501 APIs of 111 pairs of analogical Java libraries with diverse functionalities. This scale
of third-party analogical-API database has never been achieved before.

Index Terms—Analogical API, Word embedding, Skip thoughts

<+

INTRODUCTION

logical APIs between the two libraries by studying and

Third-party libraries are an integral part of many software
systems [1]. Due to various software maintenance reasons,
developers of a software project often need to migrate
the project from a currently-used library to some other
libraries [2]. This migration activity is referred to as li-
brary migration. To complete a library migration task, the
developer needs to first find a good analogical library that
provides comparable features as the currently-used library.
In this setting, we refer to the currently-used library as source
library, and the analogical library as farget library. Then,
developers must establish the mappings of analogical APIs
(methods in this work) between the libraries that implement
the same or similar feature. Although analogical libraries
can be effectively recommended [3], establishing analogical
API mappings between libraries lacks effective support.
Without the knowledge of analogical API mappings, it is
impossible to migrate the code from using the source library
APIs to using the target library APIs.

Some API mapping databases have been created by
domain experts well versed in the source and target APlIs,
but only for a few source/target platform pairs, such as
Android Qt to Windows 7 [4]. For an arbitrary pair of source
and target libraries, developers have to manually find ana-

o Chunyang Chen is with Faculty of Information Technology, Monash
University, Australia. Zhenchang Xing is with College of Engineering
& Computer Science, Australian National University, Australia. Yang
Liu and Kent Ong Long Xiong are with SCSE, Nanayng Technolog-
ical University, Singapore. E-mail: chunyang.chen@monash.edu, zhen-
chang.xing@anu.edu.au, yangliu@ntu.edu.sg, kent0002@e.ntu.edu.sg

Manuscript received December 19, 2017;.

comparing API semantics. According to our observation,
developers will first look for analogical APIs with similar
names, and then they check the documentation to see if the
candidate APIs have desired functionality. If they are still
not sure, they may further check the API usage pattern to
determine whether the candidate API is the analogical one.
However, this manual investigation process is tedious and
error-prone [5], especially when developers are unfamiliar
with the target library and the target library has a large
number of APIs [6], [7].

Having an automatic technique to create a database
of likely API mappings between analogical source-target
libraries can significantly ease the task. However, exist-
ing techniques have two fundamental limitations. First,
existing techniques [8], [9], [10] require already ported or
functionality similar applications for inferring likely API
mappings between libraries. As a library often has several
analogical libraries [3], it is unlikely to have already ported
or functionality similar applications for an arbitrary pair
of analogical source-target libraries. Second, some tech-
niques [11] measure the textual similarity of the source
and target API names/documents to discover likely API
mappings. However, the descriptions of analogical APIs
written by developers of different libraries may share few
words in common (i.e., have lexical gap). For example, the
two analogical APIs of sif4j and log4j have very different
descriptions, “Clear all entries in the MDC of the underlying
implementation” versus “Remove all values from the MDC”.
Traditional IR methods are not robust to recognize API
mappings when API names/documents have lexical gaps
(more examples in Table 1).

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

To overcome the above limitations in creating the
database of likely API mappings for analogical libraries,
we present an approach that exploits unsupervised deep
learning techniques to embed API usage semantics and API
description semantics to infer likely API mappings between
a pair of analogical libraries. In this work, we focus on API
mappings between a source API method and a target API
method of Java libraries. Our key technical contributions are
two-fold:

Embedding API usage semantics by unsupervised API
usage embeddings. Although already ported or function-
ality similar applications for a pair of analogical libraries
rarely exist, there are usually many projects using one of
the libraries. Our key observation is that these projects are
not functionally similar as a whole, but analogical APIs are
often used in a smaller similar context (e.g., method-level
API call sequence) in different projects. For example, the
two analogical APIs FileUtils.forceMkdir() in Apache Commons
IO and Files.createParentDirs() in Guava IO are often used with
Java file IO APIs like java.io.File.exists(), java.io.File.getParentFile(),
or third-party APIs like LoggerFactorylogger.error() of SLF4].
This observation inspires us to adopt word embedding
techniques [12], [13] to learn API usage embeddings using
an API's surrounding APIs in API call sequences in an
unsupervised way.

Embedding API description semantics by unsuper-
vised skip-thoughts sentence vectors. To bridge the lexical
gap in measuring API description similarity, we leverage
Recurrent Neural Network (RNN) which is able to quantify
text similarity in the presence of lexical gap. As we do not
have priori knowledge of analogical APIs to compile pairs
of API descriptions for supervised training of a RNN model,
we adopt an unsupervised RNN model (skip thoughts [14])
which encode sentence semantics by not only words in the
sentence but also the surrounding sentences around it (i.e.,
context) in documents. The trained skip thoughts models
are used to embed API names and documents to sentence
vectors respectively.

Our approach combines the three aspects of API similari-
ties to infer likely API mappings between analogical source-
target libraries, i.e., the similarity of API name vectors, the
similarity of API document vectors, and the similarity of
API usage embeddings. For each API method in the source
library, our approach outputs a ranked list of API methods
in the target library that are likely analogical APIs to the
source APL

As a proof of concept, we choose 97 Java libraries and
their analogical Java libraries (in total 111 pairs of analog-
ical source-target libraries and 583,501 API methods) from
the knowledge base of analogical libraries [3], [15]. These
libraries support a diverse set of functionalities, including
testing, data visualization, GUI development, information
retrieval, etc. We discover likely analogical APIs between
these pairs of analogical libraries and build a web appli-
cation for searching analogical APIs across these pairs of
libraries.

Using the 164 pairs of ground-truth analogical APIs
manually identified in a previous work [16], we show
that our approach outperforms baselines using other deep
learning methods (e.g., topical word embedding [17], mean
word embedding [18]) or traditional IR metrics (Term Fre-

word embedding of

—e

Fig. 1. Continuous skip-gram model. It predicts surrounding words given
the center word.

quency/Inverse Document Frequency, TF-IDF). Our manual
examination of the recommended analogical APIs for 384
randomly selected APIs in 12 pairs of analogical libraries
demonstrates the generality of our approach for libraries
with diverse functionalities.

Our contributions are listed as follows:

o We present the first unsupervised approach to incor-
porate both API usage and description similarities to
create the database of likely analogical API mappings
of third-party libraries.

o We conduct both quantitative and manual evaluation to
evaluate the effectiveness of our approach.

o We build a large database of analogical API mappings
for 111 pairs of analogical libraries and implement a
web application! for accessing the database.

2 BACKGROUND

We first introduce the two key techniques, i.e., word embed-
dings and recurrent neural network that our approach relies
on.

2.1 Word Embeddings

Word embeddings are dense low-dimensional vector repre-
sentations of words that are built on the assumption that
words with similar meanings tend to be present in similar
context. Studies [19], [20], [21] show that word embeddings
are able to capture rich semantic and syntactic properties of
software-specific words for measuring word similarity.

Continuous skip-gram model [12] is an efficient algo-
rithm for learning word embeddings using a neural net-
work model. Fig. 1 shows the network structure to train
a continuous skip-gram model. Given a corpus of training
word sequences, the goal of the model is to learn the word
embeddings of a center word (i.e.,, w;) that is good at
predicting the surrounding words in a context window of
2t+1 words (t = 2 in this example). The objective function is
to maximize the sum of log probabilities of the surrounding
context words conditioned on the center word:

o> logp(wiglw) ey

i=1 —1<j<t,j#0

Intuitively, p (w;+;|w;) estimates the normalized probability
of a word w; ; appearing in the context of a center word w;
over all words in the vocabulary. This probability can be
efficiently estimated by the negative sampling method [13].

Continuous skip-gram model maps words onto a low-
dimensional, real-valued vector space. Word vectors are

1. https:/ /similarapi.appspot.com

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

essentially feature extractors that encode semantic and syn-
tactic properties of words in their dimensions. In this vector
space, semantically-similar words (e.g., woman and lady)
are likely close in term of their vectors’ cosine similarity.
Furthermore, pairs of analogical words (e.g., “man:woman”
and “king:queen”) are likely similar in terms of relations
between pairs of words which can be computed by vector
offsets between word pairs (e.g., man — woman ~ king —
queen).

2.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is a class of neu-
ral networks where connections between units form di-
rected cycles. Compared with traditional n-gram language
model [22], an RNN-based language model can predict a
next word by preceding words with variant distance rather
than a fixed number of words. Due to this nature, it is
especially useful for tasks involving sequential inputs such
as speech recognition [23] and code completion [24]. A basic
RNN model includes three layers. An input layer maps
each word to a vector using word embedding or one-hot
word representation. A recurrent hidden layer recurrently
computes and updates a hidden state after reading each
word. An output layer estimates the probabilities of the next
word given the current hidden state.

Complex RNN-based models have been developed for
Natural Language Processing (NLP) tasks. For example, the
RNN encoder-decoder model [25], [26], [27] is commonly
adopted for machine translation tasks. This model includes
two RNNs: one RNN to encode a variable-length sequence
into a fixed-length vector representation, and the other
RNN to decode the given fixed-length vector representa-
tion into a variable-length sequence. From a probabilistic
perspective, this model is a general method to learn the
conditional distribution over a variable-length sequence
conditioned on yet another variable-length sequence, i.e.,
P(y1, ...,y |21, ..., z7). The length of the input T' and out-
put 7' may differ.

The architecture of the RNN encoder-decoder model can
be seen in Fig. 2 (The example is for English-to-French
machine translation). The encoder is an RNN that reads each
word of an input English sentence z sequentially. As it reads
each word, the hidden state of the RNN encoder is updated.
After reading the end of the the input (marked by an end-of-
sequence symbol), the hidden state of the RNN is a vector ¢
summarizing the whole input English sentence. The decoder
of the model is another RNN which is trained to generate
the output French sentence by predicting the next word
y+ given the hidden state ;) and the summary vector c.
The two RNN components of the RNN encoder-decoder
model are jointly trained to maximize the conditional log-
likelihood

N
1
— 1 2
méiXN ; ng@(ynlxn) ()

where 6 is the set of the model parameters and each (z,, y»)
is a pair of input and output sequence from the training
corpus.

3

E[ooopeono] [oloheoo]

: e -l Decoder
: TSz~

! N

: N

Ouvrez le fichier

Y X2

hu hz

Encoder

Fig. 2. RNN encoder-decoder model

- Unsupervised Train
ource Code
Repository
e s s
API call Method Method
sequences names comments

- 4 L~

Continuous
skip-gram
model

Skip-thoughts
model

Skip-thoughts

Inference |

Combine
I::> Analogical APIs ||

[API usage embedding. API name vector APL doc vector

Source |I E"‘Ode
libran %

° o o o o
API official site ° o o

Target II
libra

Fig. 3. The overall framework of our approach

3 THE APPROACH

Fig. 3 depicts the overall framework of our approach. Our
approach consists of an unsupervised training phase and an
inference phase. In the training phase, we crawl a source
code repository and extract API call sequences, method
names and comments from source code. We consider APIs
as words and apply continuous skip-gram model to a cor-
pus of API call sequences to learn API usage embeddings.
Furthermore, based on the corpus of method names (or
comments), we train a name (or comment) skip-thoughts
model [14]. Skip-thoughts model essentially incorporates
the unsupervised learning mechanism of continuous skip-
gram model [13] into the RNN encoder-decoder architec-
ture [25].

In the inference phase, our approach creates a database
of likely API-method mappings between a source library
(Ls) and an analogical target library (L;). Each likely map-
ping involves a source API method of Ly and a target API
method of L;. Our approach uses the learned API em-
beddings, the name skip-thoughts model and the comment
skip-thoughts model to obtain API usage embeddings, API
name vectors and API comments vectors. The likelihood of
analogical API mappings is then determined by combining
API usage, name and document similarities.

3.1 Encoding API Usage Similarity

We develop a word-embedding based method to embed API
usage semantics in a vector space based on the use of an
API, together with other APIs (not necessarily from the same
library), in API call sequences extracted from the code. The
obtained API vectors are then used to quantify API usage
similarity between a source API method and a target API
method.

3.1.1 Extracting API Call Sequences in the Code

To apply word embedding techniques to embed API usage
semantics to vector, a large corpus of API call sequences has

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

import android.app.ProgressDialog;

API call sequences:

org.apache.cordova.C: ity()

android.app.ProgressDialog.setTitle ()

android.app.ProgressDialog.setMessage()
android.app.ProgressDialog.setCancelable()

¥

Z
: N

public synchronized void progressValue(int value) {
) Comment sentences:

public synchronized void progressStart(final String titl, final String message) {

final Notification notification = this;

final Cordovalnterface cordova = this.cordova;

Runnable runnable = new Runnable() {

public void run() {

notification.progressDialog = new ProgressDialog(cordova.getActivity():
notification.progressDialog.setTitle(title);
notification.progressDialog.setMessage(message);
notification.progressDialog.set

show the progress dialog
set value of progress bar
stop progress dialog

public synchronized void progressStop() {
) .

Fig. 4. An example of extracting API call sequence from a method and
extracting comment sentences from one source code file.

to be prepared. We crawl a large corpus of source code from
GitHub. Intra-method API call sequences are then extracted
from the crawled source code, i.e., one API call sequence
per method declaration, as illustrated in Fig. 4. Although
technical details vary for extracting API call sequences from
code written in different programming languages, we follow
two principles in data crawling and preparation.

o Extracting all API usage data: If we crawl only projects
that use the source (or target) library and extract API call
sequences that contain only the APIs of the source (or target)
library, the learned API vectors capture the semantics of
an API only relative to other APIs in the same library,
and thus are independent of the API vectors of the other
library. Such API vectors cannot be used to infer likely API
mappings between libraries. Therefore, the extracted API
call sequences should include all APIs used in a method, no
matter they are from the source (or target) library or any
other libraries (as the example shown in Fig. 4).

When APIs of other libraries are used together with
the APIs of the source (or target) library, they essentially
provide a direct common context to bridge the otherwise
independent source and target APIs. Even when APIs of
other libraries are not directly used with source (or target)
APIs, they could still provide indirect common context to
learn API usage semantics through the propagation mech-
anism of the underlying neural network. To better capture
semantics of APIs of other libraries which will directly or
indirectly contribute to the embeddings of source (or target)
APIs, projects that do not use the source (or target) library
but use other libraries should also be crawled and analyzed.

e Normalizing API mentions: Our approach adopts
word embedding techniques developed for natural lan-
guage sentences to API call sequences. NLP tasks assume
that the same words are used when a particular concept is
mentioned in sentences. When applying word embedding
techniques to API call sequences, we need to make sure that
this assumption holds.

First, a simple name may refer to several different APIs.
In NLP, this simple name has sense ambiguity. For example,
getValue() is a widely used method name even for different
classes in one library. If we cannot distinguish them from
one another, we cannot accurately learn their semantics.
To disambiguate methods with such simple names, fully-

4

qualified names should be used in the extracted API call
sequences. Extracting fully-qualified API names in the code
usually requires the code to be compilable. However, it
requires prohibitive efforts to make hundreds of thousands
of projects crawled from GitHub compilable, for example
to fix all missing library dependencies. Therefore, we adopt
the partial program analysis techniques tool® [28] to extract
fully-qualified API names from non-compilable code.
Second, method overloading allows two or more APIs
to have the same name but different parameter lists. As
overloading methods have the same name within the same
class, they provide the same functionality at the concep-
tual level [29], [30], [31]. To validate this assumption, we
compare the method descriptions of the overloading meth-
ods in our dataset. Among the 583,501 APIs from 111
pairs of analogical Java libraries in our study, we identify
31,095 groups of overloading APIs with the same method
descriptions, and 7,694 groups of overloading APIs with
different descriptions. This analysis shows that over 80%
of the overloading methods have the same document de-
scription, i.e., the same conceptual-level functionality. Fur-
thermore, the percentage of the overloading APIs with the
same descriptions is highly underestimated because some
different descriptions of the overloading APIs actually con-
vey the same meaning, e.g., the overloading methods of
“org.geotools.geometry.jts. WKTWriter2.toLineString()” con-
tain two different but same-meaning descriptions “Gener-
ates the WKT for a LINESTRING specified by two Coordi-
nates”, and “Generates the WKT for a LINESTRING spec-
ified by a CoordinateSequence”. Therefore, we normalize
the call of overloading APIs as one API by ignoring their
parameter lists. This also helps to mitigate the data sparsity
issue when overloading APIs are treated as different APIs.

3.1.2 Learning APl and Library Embeddings

We consider an API call sequence as a sentence, and each
API method as a word. APIs with different fully-qualified
names are treated as different words in sentences, and
overloading APIs are treated as the same word. We use
continuous skip-gram model [13] to learn the vector rep-
resentation of each API (i.e., API embedding) based on the
surrounding APIs of an API (i.e., the APIs called before and
after the API) in the corpus of API call sequences. As API
call sequences are usually short (5.3 on average, 4 on median
in our dataset), we set the size of context window at 5 (i.e.,
t = 2 in Eq. 1). Given a library, we find all APIs of this
library by crawling the library’s official API website (more
details in Section 3.2.3). We take the average of the API
vectors of all APIs of this library as the library embedding.

Relational similarity between pairs of words is a metric
for reasoning about analogical words [12], [13]. Chen et
al [3] shows that library-language relational similarity (e.g.,
“NLTK:Pyton” and “OpenNLP:Java”) performs better in
inferring analogical libraries than directly using the cosine
similarity of libraries, based on the tag embeddings learned
from short and diverse question tag sequences.

3.1.3 Measuring API Usage Similarity

We find that this observation also extends to analogical
APIs between libraries. For example, Fig. 5 illustrates two

2. http:/ /www.sable.mcgill.ca/ppa/

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

pache.comymons.io.FileUtil

pache Commons 10

Fig. 5. Two-dimensional PCA projection of APl and library embeddings.
Parallel lines reveal analogical API-library relations.

analogical libraries (Apache Commons IO and Guava Common
IO) and five APIs of each library. The API and library
embeddings are projected into a two-dimensional vector
space using Principle Component Analysis [32], a technique
commonly used to visualize high-dimensional vectors. Note
that a library embedding is computed by averaging the
embeddings of all this library’s APIs, not just the five
APIs shown in the figure. In Fig. 5, relation between an
API and its library is visualized as a line linking the API
and the library, i.e., the position of an API relative to the
position of its library in the vector space. We can see that
analogical APIs exhibit roughly parallel lines in the API-
library relations. The more parallel, the more similar the
usage of analogical APIs relative to their libraries.

Therefore, in our approach, we use API-library relational
similarity to measure the usage similarity between an API
(as) in the source library (L) and an API (a;) in the target
library (L). This relational similarity can be computed by
vector arithmetic as follows:

88y se = cos(uvec(as) — uvec(Ls), uvec(ar) — uvec(Ly))

®)
where wvec() (usage vector) is API embedding or library
embedding, vector offset of APl embedding and library
embedding reflects the API-library relation (line) in the
vector space, and relational similarity is computed as cosine
similarity between the two vector offsets (i.e., the angle
between the two API-library lines).

3.2 Encoding API Description Similarity

Word embedding models embed only word-level semantics.
To represent an API name (or document) (i.e., a sentence of
multiple words) as a vector, we adopt skip thoughts [14] (an
unsupervised RNN model) to encode API names (or docu-
ments) into a vector space. Due to the power of the RNN
model, the obtained API name (or document) vectors can
quantify the semantic similarity in the name (or document)
of the two APIs, even in the presence of lexical gap. We
exploit documentation guidelines and naturalness of source
code [33] to prepare a large corpus of code-related text to
train the skip thoughts model.

3.2.1 Skip Thoughts Model

Skip-thoughts model [14] is a recently proposed unsuper-
vised RNN model that encodes the semantics of a sentence
to vector by not only the words in a sentence, but also

progress dialog
.)

Fig. 6. Skip-thoughts model. It predicts surrounding sentences given the
center sentence.

the surrounding sentences of the sentence in a document.
Fig. 6 illustrates the architecture of the skip-thoughts model.
Skip-thoughts model consists of an RNN encoder and two
RNN decoders. The encoder encodes words of a sentence
to a sentence vector. The two decoders decode this sentence
vector to the previous sentence and the next sentence in
a document, respectively. Skip-thoughts model is inspired
by the continuous skip-gram model [13]. The difference is,
instead of using a word to predict its surrounding words,
skip-thoughts model encodes a sentence to predict the sur-
rounding sentences.

Given a sentence tuple (s*~!, 5%, s in a document, let
w! denote the t-th word for sentence s’ and let 2 denote
its word embedding. The encoder in the model outputs
a sentence vector ¢ from the sentence s’. One decoder is
used to generate the next sentence s'™! from the sentence
vector ¢, while the other decoder is used to generate the
previous sentence s*~'. The different colors in Fig. 6 indicate
which components share the same parameters. The objective
function is to minimize the sum of the log-probabilities
for the previous sentence s'™! and the next sentence s*~*
conditioned on the encoder’s output sentence vector ¢ over
all training tuples:

> _log Pluwi™(with, . wit))
t

i+1)

o - ©)
+3 log Plw; t|(wi™, . wiT}),)
t

The skip-thoughts model tries to reconstruct the sur-
rounding sentences of an encoded sentence. Thus, sentences
that share similar surrounding contexts are mapped to
similar vector representations. This helps to mitigate the
lexical gap issue in quantifying sentence similarity. Some
examples are shown in Table 1, in which we take a method
declaration comment as query to find the most similar
method declaration comment in the vector space embedded
using skip-thoughts model. We can see that semantically-
similar comments can be retrieved even if they have lexical
gaps. Traditional IR methods (e.g., TF-IDF) cannot reliably
quantify text similarity in the presence of such lexical gaps.

3.2.2 Extracting Code-Related Text

To train a skip-thoughts model to embed API-method names
(or documents) to vector, a large corpus of code-related
text is required. As the name (or document) of an API
describes the functionality of the API, the training code-
related text should contain sentences serving the similar
purpose. Therefore, we extract a method-name corpus and
a method-comment corpus from the source code crawled
from GitHub, which is used to train a method-name skip-
thought model and a method-comment skip-thought model,
respectively.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 1
Examples of lexically different but semantically similar method
declaration comments from GitHub code

Nearest sentence

joins the array of strings

tells whether the file exists

this is used in the path finding algorithm
parses the exif data from the specified file
remove the action at the specified index
closes the current database connection
prints all legal moves in a position
returns the size of the map

Query

concatenate all of the strings

checks if a file exists

performs the dijkstra algorithm

reads all the exif data from the input file

remove the action icon from the given index
closes an open db connection

prints out all valid moves at the given position
returns the number of items in the map

According to the learning mechanism of skip-thoughts
model, the training corpus should contain documents that
contain a sequence of sentences. In this work, we con-
struct a method-name (or method-comment) document for
each code file, because a code file should group a set
of closely-related methods. Method declaration comments
may contain several sentences. According to documentation
guidelines (e.g., Javadoc guidance [34]), the first sentence
in method declaration comments should provide a concise
description of a method’s functionality. Also considering
the high training complexity of skip-thoughts model, we
extract only the first sentence in the method declaration
comments. A method declaration without comment will be
ignored. If the first sentence matches one of the six patterns,
i.e., beginning with “TODO:”, “Created by Intelli] IDEA”,
“Created with Intelli] IDEA, “User:”, “Data:”, “Name:”, we
consider the comment as an irregular comment and ignore
the corresponding method.

Inspired by the studies on the naturalness of source
code [33], [35], [36], [37], we order the names (or comment
sentences) extracted from methods declared in a code file
in the same order as method declarations. The intuition is
that developers declare methods in an order according to
certain natural relatedness among methods, and this natural
relatedness is reflected in the order of the names (or com-
ments) describing the methods’ functionalities. For example,
the source code file in Fig. 4 is an implementation of an
Android application. We can see that the name (or comment)
of “progressValue” method is highly related to the name (or
comment) of its preceding method “progressStart” and the
name (or comment) of its following method “progressStop”
as this is the logic flow to implement a progress bar. That
is, the surrounding names (or comments) of a name (or
comment) provide the context to embed the semantics of
the given name (or comment).

3.2.3 Measuring APl Name (or Document) Similarity

Given a library, we manually locate its official API website
and then use a web crawler to crawl all API web pages
from the website. We extract the fully-qualified API name
and the first sentence of the API description for each API
from its webpage. Then, we use the trained method-name
(or method-comment) skip-thoughts model to embed API
names (or documents) in a vector space.

For API name, we split the name into a sequence of
words according to API naming convention. For example,
for an API method com.googlecode.charts4j.Plots.newRadarPlot()
from the library charts4j, we split the name by “.” and
camel case, and remove common package prefix “com”,

charts4j” which appear in all API names?,

V7]

“googlecode”,

3. Common package prefixes for all libraries in this study are listed
in https:/ /similarapi.appspot.com/packagePrefix.html

6

and normalize the words to lower case. We obtain a sentence
“plots new radar plot” for the API, which is entered to the
skip-thoughts model to obtain the name vector for the APL
Given the name vector nvec of the two APIs, a, in the source
library L, and a; in the target library L;, we use cosine
similarity to measure the similarity of the two API names:

SiMpame(as, ar) = cos(nvec(as), nvec(at)) (5)

For the first sentence of the API description, we di-
rectly enter it to the trained method-comment skip-thoughts
model to obtain the document vector for the APIL Given
the document vector dvec of the two APIs, a, in the source
library L, and a; in the target library L;, we use cosine sim-
ilarity to measure the similarity of the two API documents:

StMgec(as, at) = cos(dvec(as), dvec(at)) (6)

3.3 Building Analogical-APl Knowledge Base

Given a source library Ly, we search the knowledge base
of analogical libraries [3] to find its analogical libraries (i.e.,
the target library L;). We determine the likelihood of an API
method a, in the source library L, and an API method a;
in the target library L; being analogical by combining three
information similarities of the two APIs, i.e., the similarity
of API names (siMpame), the similarity of API documents
(stMmgoc), and the similarity of API usage (5imysqge) into an
overall similarity score:

Sim(as,ar) = a X $iMysage(as, ar) + B X simgoc(as, at)

+’7 X Simname(aaat)

@)

where «, 3,7 are the weight parameters in (0,1), and we
make o + 5 4+ v = 1 so that the final similarity value is
of the range [—1, 1] where 1 is the most similar and -1 is
the opposite. These weight parameters are tuned using a
small evaluation set of analogical API mappings in the tool
implementation. We will elaborate the parameter tuning in
Section 5.2.3.

For each API method in the source library, we rank the
API methods in the target library by their overall similarity
with the given source API. We take the top 10 target API
methods with the highest similarity values as the likely
analogical APIs to the source API method. Then, we obtain
a knowledge base of likely analogical API mappings for a
pair of analogical source-target libraries.

For skip-thought model, we only take words with fre-
quency greater than 5 into consideration. In this setting, the
vocabulary size is 13,067 for API description, and 9,569 for
API names. Considering the data nature and training effi-
ciency, we set the number of context sentences as 1. That is
when training the skip-thought model, the current sentence
will infer 1 prior sentence and 1 subsequent sentence. The
encoder and decoder in our skip-thought model contain 1-
layer RNN respectively.

4 TooOL SUPPORT

We have implemented our approach in a proof-of-concept
analogical-APIs search web application (https://similarapi.
appspot.com). This web application contains the database

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

of likely analogical APIs between 111 pairs* of analogi-
cal Java libraries. The database includes the APIs of the
latest version of these Java libraries. To train our skip-
thought model and API embedding model, we downloaded
135,127 Java projects from Boa dataset [38], [39]. Boa (http:
/ /boa.cs.iastate.edu/) is a domain-specific language and
infrastructure that eases mining software repositories. The
Boa dataset has also been used in several studies on mining
software repositories [40], [41], [42] In our work, we remove
few-star (< 10) or deleted projects and obtain 135,127 Java
projects as our dataset. These projects contain 2,058,240
source-code files. We extract API call sequences from the
crawled code using a partial program analysis (PPA) [28]
tool for Java. We collect a corpus of 10,554,900 API call
sequences which includes 952,829 unique APIs for learning
API embeddings. We use the Eclipse JDT compiler [43] to
extract method names and comments (Javadoc format) from
the crawled code. We obtain a corpus of 26,622,034 method
names and a corpus of 2,798,837 comments for training the
method-name and method-comment skip-thoughts models
respectively. Note that method declarations always have a
name, but they may not have comment and we also ignore
those with irregular comments. The parameter tuning for
the tool will be discussed in Section 5.2. The trained skip-
thought model and API embedding model are adopted to
infer the API usage and description similarity of analogical
APIs among 583,501 APIs of 111 pairs of analogical Java
libraries.

5 EVALUATION

This section reports the quantitative and qualitative evalua-
tion of our approach, which aims to answer three research
questions:

e RQ1: How do different parameter settings affect the per-
formance of our approach?

o RQ2: How well can API usage and description similarities
determine analogical APIs independently or as a whole?

o RQ3: How well can our approach work for libraries with
diverse functionalities?

5.1 Experiment Setup

First, we describe how we collect the ground truth for the
evaluation and the metrics used in the evaluation.

5.1.1

To evaluate our approach automatically, we collect a set of
ground-truth analogical API mappings from the dataset of
API mappings® released by Teyton et al. [16]. This dataset
involves 4 pairs of similar libraries: (Apache Commons
IO [44], Guava 1O [45]), (Apache Commons Lang [46],
Guava Base [47]), (JSON [48], gson [49]) and (mockito [50],
jMock [51]). For each pair of libraries, Teyton et al. manually
validate the discovered API mappings and produce a set of
ground-truth API mappings. Teyton et al.’s work considers

Ground Truth of Analogical-APIl Mappings

4. All pairs can be seen in https://similarapi.appspot.com/
allLibPair.html

5. http:/ /web.archive.org/web/20160412155655/,
labri.fr/perso/cteyton/Matching/index.php

http:/ /www.

TABLE 2
Ground Truth Summary

Analogical library pair #API mappings | Functionality
Apache Commons I0/Guava IO 14 170
Apache Commons Lang/Guava Base 30 Utility methods
JSON/gson 22 (De)serialization
mockito/jMock 16 Test mocking

overloading APIs as different APIs, while our work consid-
ers overloading APIs as one API Therefore, we merge the
mappings involving overloading APIs in Teyton’s dataset
as one mapping in our evaluation. We obtain in total 82
API mappings (see Table 2) as ground truth to evaluate
our approach. Each mapping has a pair of API methods,
one from each analogical library. As APl mappings are
mutual, we can use either one API method in a mapping
as query API and the other one as analogical API to be
recommended. Therefore, we have 82 x 2 = 164 query APIs
for the evaluation.

5.1.2 Evaluation Metrics

In our experiment, we adopt two metrics to measure the per-
formance of our analogical-APIs recommendation results:
Recall rate@k (Re@k) and Mean Reciprocal Rank (MRR).
The recall rate@k (Re@k) is commonly used to evaluate
recommendation systems used in software engineering [1],
[52], [53]. For each query API a;, let the ground truth
analogical API be gt;, and let the set of top-k recommended
APIs be R;. The recall rate@k (Re@k) is the proportion of
recommendation sets R; for all query APIs that include the
corresponding ground truth API gt;. We use a small value
for k =1, 5,10 as developers are unlikely to look through a
long recommendation list.

In detail, the Re@1 means the probability of the first
recommendation API from our model is just the ground
truth. Similarly, Re@10 represents the probability that the
ground truth can appear in our top-10 recommendation
list. Note that we set the maximum % in this work at 10
as developers are unlikely to look through a long recom-
mendation list. Compared with the recall rate in the top
10 recommendation results, developers sometimes may be
more concerned with the position of first real analogical
API within the recommendation list. Therefore, apart from
Re@k, we also adopt MRR which only cares about the
single highest-ranked relevant item as an evaluation metric
in this work. MRR is a commonly adopted measure for
evaluating the performance of information retrieval systems
especially API recommendation [54], [55], [56]. Let k& be
the rank position of the ground-truth analogical API in the
recommendation list for a query API, then the reciprocal
rank (RR) is defined as % The MRR is the mean of the RRs
over all query APIs. The higher the MRR and Re@k metrics
are, the better the recommendation results are.

5.2 RQ1: Impact of Parameter Settings

Next, we report the experiments of different parameter set-
tings that affect the performance of our approach. Through
these experiments, we determine the parameter settings
used for our approach in the evaluation as well as for our
tool implementation.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[1 5 10 |

100 200 300 400 500
API embedding dimension

Fig. 7. The performance of encoding API usage similarity with different
API| embedding dimensions

5.2.1 API Embedding Dimensions

The most important parameter for the continuous skip-gram
model [13] is the dimension of the API vectors to be learned.
We test five different API embedding dimensions from 100
to 500 with the increment 100 which is commonly adopted
in other works [57], [58] using word embedding in SE
context. For each dimension setting, we use the learned API
vectors to recommend likely analogical APIs for each query
APl in the ground-truth based on the API usage similarity in
Eq. 3. Fig. 7 shows that there are no significant differences in
the performance in different dimension settings. But overall,
the MRR and Re@k metrics increases slightly as the API
embedding dimension increases. Therefore, we set the API
embedding dimension at 500.

5.2.2 Skip-Thoughts Model Parameters

Skip-thoughts model has two key parameters, the dimen-
sion of input-layer word embedding and the number of
the hidden units (sentence vector dimension) in the RNN
model. To see the impacts of the parameters on encoding
API name/document similarity, we vary the value of these
two parameters with word embedding dimension from 100
to 700 while number of hidden units from 600 to 1400 which
is commonly adopted in other software-engineering related
works [58], [59].

Fig. 8 shows the performance differences in different
parameter settings. We can see that when the dimension of
the input-layer word embedding is 600, the skip-thoughts
model achieves the best results for encoding both API name
similarity (Fig. 8(c)) and API doc similarity (Fig. 8(a)). For
the number of hidden units, the performance of 800 units is
similar to that of 1200 units for encoding API doc similarity
(Fig. 8(b)). But 800-units setting has better MRR (0.231 vs
0.218) and Re@1 (0.141 vs 0.125), compared with 1200-units
setting. Furthermore, smaller unit number indicates faster
training and prediction. The RNN model with 800 hidden
units also produces the best performance to encode API
name similarity (Fig. 8(d)). Therefore, we set the word em-
bedding dimension at 600 and the number of RNN hidden
units at 800.

5.2.3 Combining APl Usage/Name/Document Similarities

As described in section 3.3, there are three weight parame-
ters to combine the three similarities (API name similarity,
API document similarity, and API usage similarity) into an
overall similarity score. We perform the five-fold cross vali-
dation to select the value for these three weight parameters.
In this experiment, we set API embedding dimension at 500,
and word embedding dimension at 600 and the number
of RNN hidden units at 800 for skip-thoughts model. We

)))))

(a) API Doc

‘ E—yry

et s een]

1000
#hidden units

300 500
word embedding dimension

(c) API name (d) API name

Fig. 8. The performance of encoding APl name/document similarity
under different parameter settings

randomly divide the ground-truth API mappings into five
equal-size portions for five-fold cross validation. For each
iteration, we use four portions to determine the best combi-
nation of the three parameters and the rest one portion for
testing.

We alter three parameters by 0.05 increments. For each
combination of the three weight parameters, we recommend
likely analogical APIs for each query API in the testing
portion based on the overall similarity in Eq. 7. In our
experiment, we observe that different library pairs may have
different optimal weight parameters. However, considering
the limited number of ground-truth analogical APIs and the
generality of the weight parameters, we compute the MRR
and Re@k metrics for the four pairs of ground-truth libraries
as a whole. We obtain the best results in all MRR and Re@k
metrics for the four pairs of ground-truth libraries, when
we set o as 0.3 (for API usage similarity), S as 0.2 (for API
document similarity), and «y as 0.5 (for API name similarity).

5.3 RQ2: Performance of APl Usage and Description
Similarties

In this section, we report the comparative study of our ap-
proach for analogical API recommendation and other deep
learning methods or traditional information retrieval (IR)
methods. We also study the impact of different combinations
of API usage, name and/or document similarities on the
recommendation performance.

5.3.1 The Performance of Encoding APl Usage Similarity

First, we consider only API embeddings and recommend
likely analogical APIs for a query API in the ground truth
based solely on API usage similarity. Our method uses API-
library relational similarity (see Eq. 3) to determine analogi-
cal APIs. We adopt two baselines to study the importance of
library embeddings and different ways to incorporate API
and library embeddings, respectively.

Baseline Methods:

e The first baseline is attributional similarity of API
embeddings which is implemented in Nguyen et al.’s
work [60]. In this baseline, we still use continuous skip-
gram model to embed API usage in API call sequences
to vector (see Section 3.1.2). But we recommend likely

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 3
Comparison of analogical-API-recommendation performance by
different methods to encode API usage similarity

Method MRR Re@1 Re@5 Re@10
Baselinel (API attributional similarity) 0.294 0.164 0.405 0.56
Baseline2 (Topical API attributional similarity) | 0.116 0.06 0.181 0.241
Our API-library relational similarity 0.351 0.224 0.431 0.612

analogical APIs for a query API based on the cosine
similarity of the API embeddings between the query
API and an APl in the target library. In the first baseline,
library embeddings is not taken into account at all
when measuring API usage similarity.

e In the second baseline, we use a variant word em-
bedding model, topical word embedding [17], to em-
bed library semantics into API embeddings during the
learning process. In our application of topical word em-
bedding, we consider a library as the topic for its APIs.
We prepare the corpus for training topical API embed-
ding model by attaching the library to its APIs. After
obtaining topical API embeddings, we use attributional
similarity of topical API embeddings to recommend
likely analogical APIs for a query API. The second
baseline provides an alternative way to incorporate API
and library embeddings, compared with our method.

Experiment Results: Table 3 shows the performance of
our API usage similarity (API-library relational similarity)
and the two baseline similarities (attributional similarity of
API embeddings and attributional similarity of topical API
embeddings). We can see that among the three similarity,
our API usage similarity is significantly better than the other
two baseline similarities for all evaluation metrics. Com-
pared with attributional similarity of API embeddings, the
MRR of our similarity is 0.35 (19.4% higher), recall rate@1 is
0.224 (36.6% higher) , recall rate@5 is 0.431 (6.4% higher).
The reasons for the weaker performance of attributional
similarity of API embeddings are twofold. First, API call
sequences are shorter than natural language sentences. That
is, there is often not much context to embed an API’s usage.
Second, the surrounding APIs of analogical APIs in API call
sequences can be very diverse, depending on the features
and implementation styles of the projects using analogical
libraries. The context diversity may separate analogical APIs
apart in the embedding space.

The performance of topical API embeddings is even
much worse than that of the original API embeddings. This
suggests that topical word embedding is not suitable for
embedding library semantics with its APIs. In contrast, our
API usage similarity is an effective mechanism to take into
account library semantics in terms of an API’s relation with
its library in the vector space when reasoning about likely
analogical APIs between libraries.

5.3.2 The Performance of Encoding APl Name/Description
Similarity

Next, we recommend likely analogical APIs for a query API
in the ground truth using solely API name (or document)
similarity. Our method uses the skip-thoughts model to
obtain API name (or document) vector representations to
determine their similarity. We compare our method with the
two different ways to obtain API name (or document) vector

representations.

Baseline methods: In this experiment, our method and the
two baseline methods all measure API name (or document)
similarity using the cosine similarity of API name (or doc-
ument) vectors. To use the two baseline similarities, we
build the corpus of all API Javadocs of the 111 libraries
used in our current analogical-API search tool. Same as
our approach, we collect only the first sentence of an API’s
Javadoc to build a corpus of API documents. We preprocess
the fully-qualified API names in the same way as described
in Section 3.2.3 and obtain a corpus of API names.

e The first baseline similarity is the traditional IR sim-
ilarity based on the TF-IDF metric [61]. This baseline
similarity is also used in Pandita et al.’s paper [11] to
infer likely API mappings by the textual similarity of
API documents. To use TF-IDF, we follow Pandita et
al.’s work to preprocess the Javadoc corpus: stop-word
removal, camel case split, lowercasing, stemming, etc.
Given an API, we encode its API name (or Javadoc) to
a TF-IDF vector.

 Apart from the traditional TF-IDFE, we also set up some
state-of-the-art sentence embedding algorithms based
on the deep learning methods. The second baseline is
based on the Doc2vec [62] model which composes word
embeddings into sentence or document embeddings
with neural networks. The third baseline is a sentence
embedding model based on weighted average of word
vectors in the sentence using PCA/SVD (Principal
Component Analysis/Singular-Value Decomposition),
and it is called smooth inverse frequency (SIF) [63].
Another baseline are Simple Word-Embedding based
Models (SWEMs) [64] with three variations, consisting
of parameter-free pooling operations such as average,
max-pooling and concatenating the average and max-
pooling embedding.

Experiment results: The comparison of different meth-
ods to encode Javadoc similarity is shown in Table 4.
Doc2vec (Baseline 2) gets the poorest performance in both
encoding API document similarity and name similarity.
That may be because that Doc2vec is designed for document
embedding, hence it does not work well for encoding sen-
tences which are much shorter than document. Compared
with SWEM (baseline 4, 5, 6), TF-IDF (baseline 1) and SIF
(baseline 3) have much better performance in all metrics. But
our skip-thoughts model outperforms all baselines in these
two experiments. For encoding API document similarity,
our skip-thoughts model gain 13.2%, 11.7%, 9.6% improve-
ment in MRR, Re@5, Re@10 than the best results across all
baseline, and it achieves the similar performance in Re@1
to SIE. For encoding API name similarity, our Skip-thoughts
model gains 12.2%, 24.2%, 7.5% improvement in MRR, Re@1
and Re@10 than the best results across all baseline, and it
achieves the similar performance in Re@5 to TF-IDFE.

5.3.3 The Performance of the Combined Similarity

Finally, we compare the performance of recommending
likely analogical APIs for a query API in the ground truth
using a combination of API usage, name and/or document
similarity. Table 6 summarizes the comparison results.
Although a sole similarity in our approach outperforms
other deep learning or traditional IR baselines, any sole

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 4
Comparison of analogical-API-recommendation performance by
different methods to encode AP document similarity

Method MRR Re@1 Re@5 Re@10
Baselinel (TF-IDF) 0.202 0.148 0.273 0.344
Baseline2 (Doc2vec) 0.166 0.109 0.227 0.266
Baseline3 (SIF) 0.204 0.156 0.266 0.313
Baseline4 (SWEM-avg) 0.192 0.109 0.305 0.367
Baseline5 (SWEM-max) 0.155 0.109 0.211 0.305
Baseline6 (SWEM-concat) 0.157 0.117 0.211 0.25
Our skip-thoughts 0.231 0.141 0.305 0.406
TABLE 5

Comparison of analogical-API-recommendation performance by
different methods to encode API name similarity

Method MRR Re@l Re@5 Re@10
Baselinel (TF-IDF) 0.303 0.186 0.448 0.507
Baseline2 (Doc2vec) 0.210 0.119 0.313 0.381
Baseline3 (SIF) 0.304 0172 0.433 0.455
Baseline4 (SWEM-avg) 0.253 0.134 0.358 0.433
Baseline5 (SWEM-max) 0.257 0.134 0.373 0.440
Baseline6 (SWEM-concat) 0.257 0.134 0.381 0.455
Our skip-thoughts 0.341 0.231 0.448 0.545

similarity is not good enough for finding likely analogical
API mappings. The MRR for using solely API usage, name
or document similarity is about 0.23 ~ 0.35, and the Re@1 is
only 0.14 ~ 0.23. That is, only for one or two out of 10 query
APIs, the top-1 recommended APl is the true analogical APL
Combining any two similarities can boost the recommen-
dation performance significantly with the MRR larger than
0.47 and the Re@1 larger than 0.31. Our overall similarity
in Eq. 7 that incorporates all three similarities produces the
best performance in all metrics. The MRR is 0.556 indicating
that the analogical API can in average rank as the second
position in the recommendation list. The Re@10 is 0.845,
and the Re@1 is still reasonably high at 0.409. That is, for
4 out of 10 query APIs , the top-1 recommended API is
indeed the true analogical APIL. For more than 8 out 10 query
APIs, the true analogical APIs are included in the top-10
recommendation list.

These results indicate that API usage similarity and API
description similarity can complement each other. Mean-
while, API name and document similarities are not com-
pletely redundant. That is, API names and documents can
also provide complementary information to each other. In-
corporating all three similarities can enhance the accuracy
of analogical API recommendation task. Compared with the
entire set of APIs in the target library, developers can highly
likely find the analogical API by examining only a small
number of APIs that our approach recommends.

We have compared our model with different baseline
methods base on individual information i.e., encoding API
usage (Section 5.3.1) and encoding API description and
name (Section 5.3.2). According to the performance of the
baselines, we then select the best baseline for encoding each
kind of information (API attributional similarity for encod-
ing API usage and SIF for encoding API description and
name), and combine them to recommend analogical APIs.
Although each component in our approach for encoding
each kind of information has relatively small performance
improvement than the best baseline, our overall model with
the combined similarity achieves significant increase than
the combined best baselines. As shown in Table 6, our
model achieves 24.3%, 53.8%, 19.6%, 11.2% improvement in
MRR, Re@1, Re@5, Re@10 compared with the combined best

10

TABLE 6
Comparison of analogical-API-recommendation performance by
different combinations of APl usage/name/document similarity

Information MRR Re@1 Re@5 Re@10
API usage 0351 0224 0431 0.612
API document 0231 0.141 0.305 0.406
API name 0341 0.231 0.448 0545
API usage+document 0474 0355 0.636 0.691
API usage+name 0.506 0.327 0.727 0.745
API document+name 0470 0318 0.636 0.827
API usage+document+name | 0.556 0.409 0.745 0.845
API all info (baseline) 0.447 0.266 0.623 0.76

baselines.

For API recommendation list, some candidates may be
false positive results. Although developers need to filter
out false positive recommendations from the top 10 results,
this effort is much less than that to identify an analogical
API out of hundreds or thousands of APIs of a library. In
addition, considering the quality of our analogical API, if
developers cannot find the actual analogical API in the top
10 recommended APIs, there would be very unlikely some
analogical APIs for the query APIL Therefore, even if no
analogical API actually exists, using our approach can help
developers quickly confirm the likelihood of non-existence
of analogical APIs.

5.4 RQ3: Generality for Diverse Libraries

To validate the generality of our approach, we manually
evaluate the performance of our analogical API recommen-
dation for 384 randomly sampled query APIs in 12 pairs of
analogical libraries.According to the widely-used sampling
method [65], we examine the minimum number MIN of
data instances in order to ensure that the estimated pop-
ulation is in a certain confidence interval at a certain con-
fidence level. This MIN can be determined by the formula:
MIN =no/(1+ (no — 1)/populationsize). ng depends on
the selected confidence level and the desired error margin:
no = (22 % 0.25) /e, where Z is a confidence level’s z score
and e is the error margin. For the final human evaluation,
we examine MIN instances of relevant data for the error
margin e = 0.05 at 95% confidence level i.e., MIN = 384.
Therefore, we randomly sample 384 query APIs in 12 pairs
of analogical libraries for manual evaluation.

5.4.1 Evaluation Procedure

In this evaluation, we use the four pairs of analogical li-
braries in the ground-truth plus the other 11 pairs of analog-
ical libraries with diverse functionalities (see Table 7). Given
a pair of analogical libraries, we consider one library as
source library and the other as target library. To investigate
our model’s performance on unpopular libraries, we first
define the popularity of the library. As all of the studied
libraries appear in Stack Overflow tags which can be used to
tag the topic of questions, we take the library tag frequency
as the indicator of its popularity (before Aug 28, 2018).
Among 96 libraries in this study, the median frequency is
695°, so we regard libraries with higher frequency as “pop-
ular” while libraries with lower frequency as “unpopular”.
Then the 12 library pairs adopted in section 5.4 belong to

6. Detailed library frequency can be seen in https://similarapi.
appspot.com/libFreq.html

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

three different groups i.e., 1) API mapping between popular
libraries (4 pairs), 2) API mapping between hybrid pairs
i.e., popular library and unpopular library (5 pairs), and
3) API mapping between unpopular libraries (3 pairs). We
randomly sample 32 API methods in the source library as
query APIs, and use our approach to recommend 10 API
methods in the target library for each query APIL.

We recruit four PhD students in our school who have
3+ years Java programming experiences. Based on the par-
ticipants” experience in different libraries, we assign each
participant six pairs of analogical libraries so that each
result is checked by two students. We calculate the Cohen’s
Kappa [66] to evaluate the inter-rater agreement. Examining
one pair of analogical libraries takes a 40-minutes session
with 10-minutes break between sessions. Participants are
asked to determine whether a recommended target API is
a true analogical API to the query API Participants make
their decision based on their priori knowledge of using the
assigned libraries, API documents (if any), and/or other
information (e.g., API usage examples) they can find on the
Internet. Based on the participants’ labeled true analogical
APIs, we compute the MRR and Re@k for the recommenda-
tion results.

5.4.2 Mining Analogical APIs not in Ground-Truth APl Map-
pings

The API mappings in the ground-truth contain only a small
portion of APIs in the four pairs of analogical libraries,
because Teyton et al’s method [2] considers only APIs in-
volved in code changes to port an application. For example,
there are in total 566 API methods in mockito and 344 API
methods in jMock, but only 16 API pairs between the two
libraries are covered in the ground truth. We would like to
ensure that our automatic evaluation is not biased by the
small number of API mappings involved in code changes.
For the 128 query APIs (no overlapping with the ground-
truth APIs) in the four pairs of libraries in the ground truth,
the MRR, Re@1, Re@5 and Re@10 for the recommendation
results are 0.516, 0.408, 0.603 and 0.68 respectively. Overall,
our manual evaluation results are consistent with automatic
evaluation results based on a different set of ground-truth
API mappings labeled by other researchers.

The MRR of manual evaluation is slightly lower than
that of automatic evaluation (MRR=0.556, see Table. 6). The
Re@1 is similar to that of automatic evaluation (0.409). The
Re@5 and Re@10 are relative lower than those of auto-
matic evaluation. A key difference between the APIs in
the ground-truth API mappings and the randomly sampled
80 APIs is that all APIs in the ground-truth are confirmed
to have analogical APIs, while randomly sampled 80 APIs
likely do not have analogical APIs. For example, APIs for
a unique feature in one library essentially do not have
counterparts in the other library. Therefore, our automatic
evaluation shows that if an analogical API does exist, our
approach can highly likely rank it in the top 5 or 10 recom-
mended APIs. However, our approach will fail when there
are fundamentally no analogical APIs to recommend. In
such cases, Re@5 or Re@10 will be zero, resulting in relative
lower performance in manual evaluation. We will elaborate
further on this point in Section 5.4.3.

11

TABLE 7
Manual evaluation of analogical API recommendation in 12 pairs of
libraries with diverse functionalities

Analogical library pair Functionality MRR Re@1 Re@5 Re@10
Apache I0 — Guava IO 1/0 0.538 0.38 0.69 0.75
Guava Base — Apache Lang | Utility methods 0.588 0.5 0.69 0.72
JSON — gson (de)serialization 0.521 044 059 0.75
mockito — jMock mocking 0416 031 044 05
dom4j — jdom XML parsing 0.512 0.38 0.63 0.72
junit — testng unit testing 0.658 0.63 0.69 0.72
log4j — slf4j logging 0.473 041 041 0.53
jexcelapi — apache-poi excel manipulation [0.611 0.47 0.75 0.84
pdfbox — itext PDF manipulation |0.404 028 047 0.53
lucene — solr information retrieval | 0.469 0.38 047 047
charts4j — jfreechart visualization 0315 0.16 044 053
opennlp — stanford-nlp NLP 0453 0.34 053 0.59

5.4.3 Mining Analogical APIs in Diverse Libraries

The four pairs of libraries in the ground-truth cover only
limited functionalities (see Table 2). We would like to extend
our evaluation to other libraries with different functional-
ities. We select 8 more pairs of analogical libraries from
our dataset. Table 7 shows the manual evaluation results
for these additional 8 pairs of libraries as well as the four
pairs of libraries in the ground-truth. The Cohen’s Kappa
metric among annotator’s decisions is 93.6% which indicates
almost perfect agreement [66].

We can see that the performance may vary for libraries
with different functionalities. Overall, the performance is
good for libraries from application domains that have a
common set of application logic, such as (Guava Base, Apache
Commons Lang) for utility methods, (junit, testng) for unit
testing, (jexcelapi, apache-poi) for spreadsheet manipulation,
(dom4j, jdom) for XML parsing and manipulation. These
analogical libraries tend to have analogical APIs for the
relevant application logic. We then analyze the potential
effects from different factors including the lib uniqueness,
lib populairity, and API design granularity.

Influence of the lib uniqueness: Analogical libraries often
have different focuses, even they are developed for the
same application domain. For example, both itext and pdf-
box can be used for PDF manipulation, but itext focuses
more on PDF generation and modification, while PDFBox
is a PDF content extraction library with basic modification
functionality [67]. As another example, chart4j focuses on
wrapping Google Chart API in Java, while JFreeChart is
a traditional Java chart library [68]. For such analogical
libraries, if one library has some unique features that do
not have counterparts in the other library, our approach will
fail for these unique features as there are no counterparts to
recommend.

Influence of the lib popularity: Table 8 shows that the MRR,
Re@1, Re@5, Re@10 for the unpopular library pairs is the
highest, following with the popular pairs and hybrid pairs.
It seems that if libraries are with the similar popularity in
the pair, out model can gain better performance. We further
adopt the Pearson correlation [69] to analyze the detailed
correlation between the model performance and the library
occurrence frequency in Stack Overflow. The correlation
coefficient value between MRR, Re@1, Re@5, Re@10 and
lib frequency is ranging from -0.11 to -0.16 with the p-
value ranging from 0.63 to 0.74. It shows that there is no
significant correlation between the popularity of libraries
and the performance. There are three kinds of information in
this study used for encoding API similarity. The API docu-

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 8
The performance of our model in different popularity group

Analogical library pair MRR Re@1 Re@5 Re@10
Popular 0501 0.425 0.51 0.563
Hybrid 0463 0.344 0.55 0.642
Unpopular 0.546 042 0.67 0.73

mentation and name is not influenced by the lib popularity,
but only API usage embedding may be influenced as our
API embedding model is sensitive to API usage frequency
to some extent. It accounts for the phenomenon that libraries
in the pair with similar popularity have better results that
the hybrid groups. But as the API embedding only accounts
for 30% weight of API similarity inference, the popularity
influence is not significant for the overall performance.

Influence of the API design granularity: Often, the API
design of analogical libraries is rather different even for the
similar features. Sometimes, one library intends to provide
a facade for the other library, for example, solr for lucene and
slf4j for logdj. A facade often provides an easier or simpler
interface to the underlying library. In other cases, analogical
libraries may support different practices and their APIs are
at different level of granularity. For example, the two test
mocking libraries mockito and jMock differ a lot in the way
they deal with expectations [70]. Such design differences
will result in complex (e.g., one-to-many or many-to-many)
API mappings for the same feature. This leads to difficulty
in determining analogical APIs between libraries.

The analysis of different factors show that the results are
influenced by the nature of the library such as the library
uniqueness and its API design granularity, instead of its
popularity.

5.5 Threats to Validity

One threat to internal validity is the availability of API usage
and document data for adopting our approach, especially
for unpopular libraries. To understand the availability of the
required document data, we first take all java libraries from
our previous work [3] which recommends analogical third-
party libraries across different programming languages.
Among 1805 java libraries extracted from tags in Stack
Overflow, we randomly sample 50 of them to check if they
have corresponding Javadoc. We also count these libraries
occurrence in Stack Overflow tags, and their tag frequency
ranges from 3 (unpopular) to 138049 (very popular) as of
Aug 28, 2018. The results show that 49 (98%) of them
provide detailed Javadoc’. Only 1 library rest.li® does not
have explicit Javadoc website, but it is easy to extract the
Javadoc from their source code’. It demonstrates that the
data such as API usage, method Javadocs, API specification
is generally available, and can be extracted from source
code and API's official sites with reasonable amount of
engineering effort and time.

The second threat to internal validity is the optimization
of several approach parameters. Our experiments show that
our approach is reliable for a range of parameter settings.
The third internal threat is that the collected GitHub projects

7. The detailed results of this pilot study can be seen in https://
similarapi.appspot.com/libraryJavadoc.html

8. https://github.com/linkedin/rest.li/wiki/Rest.li-User-Guide

9. https:/ / github.com/linkedin/rest.li

12

for training the API embedding model and the skip-thought
model may be of low quality. To filter out the potential
low-quality projects, we have removed projects whose star
number is less than 10. The fourth threat to internal validity
is the scope of the API usage. It is well-known that it is
difficult to define an API's usage scope, but we do not
explicitly take the API usage scope into consideration in
this work. Instead, we encode the API usage semantic by
its neighbour API calls in the window. As each method
contain 5.3 API calls in average, we set up the window
size as 5 so that we can include most potentially related
APIs. Furthermore, note that continuous skip-gram model
does not consider the ordering of words in the context
window. Of course, it is likely that some API calls within the
context window may not be in the target APIs usage scope.
However, the word embedding technique relies on overall
co-occurrence statistics to lower their weight of less frequent
API co-occurrence in the training data, i.e., the less related
API appears less frequently in the window, also contributing
less to the final embedding. In addition, to further mitigate
the potential bias of encoding API usage pattern, we also en-
code the API names and API documents to jointly represent
the semantic of the API. Another internal threat is that we
do not take into account inter-procedural calls. This may
may negatively influence extracting analogical APIs that
usually happen only in the same code block (method), and
not across different methods. But note that apart from API
usage pattern, we also incorporate the information of API
name and API comments which may mitigate the potential
negative influence. And we will improve it in the future [71],
[72].

The last internal threat is that we only examine a
small number of analogical APIs due to the significant
effort required. But our manual evaluation involves 3 times
more APIs than Teyton’s dataset [16], and the results are
consistent with the performance of our approach on the
ground-truth APIs identified in Teyton’s dataset. In fact, the
difficulty in manually building a big dataset of analogical
APIs actually calls for some unsupervised method like ours
to recommend analogical APIs for third-party libraries. We
build an online application to release our analogical APIs
database for public access. The power of the crowd could
be exploited to examine the results in large scale. As more
ground-truth mappings are accumulated from the online
application, they could be used to further optimize system
parameters.

A threat to external validity includes the generalization
of our findings for more analogical libraries and for other
programming languages. In this work, we examine 12 pairs
of analogical libraries with diverse functionalities. Although
our approach works reliably in general, we observe the
performance differences due to the characteristics of differ-
ent libraries. We release our analogical API database via
an online application. We hope the power of the crowd
could be exploited to examine more results in large scale
such as the clicking rates. As more ground-truth mappings
are accumulated, they could be used to further optimize
approach parameters. Although programming languages
differ from each other, they generally have comments, API
sequences and certain format of method naming conven-
tion. Therefore, by customizing the implementation details

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

of data preprocessing steps, our approach can potentially be
extended to other languages.

6 RELATED WORK

There are three types of software migration tasks: across
version migration [73], language/platform migration, and
library migration. Typical techniques to support across ver-
sion migration, such as Diff-Catchup [74], analyze already-
migrated code (e.g., unit tests, demo applications) to infer
code change patterns to update a software application to
work with the new version of the framework. Existing
techniques [8], [10] supporting language/platform migra-
tion require the same software implemented in different
languages or platforms, for example, the original Lucene
written in Java and the Lucene.NET written in C# In
contrast, our model is totally unsupervised without relying
on such parallel corpus. Gokhale et al. [9] relieves such
parallel-implementations requirement, but it still requires
functionality similar applications for different platforms,
e.g., the TicTacToe game for JavaME and Android developed
by different projects.

Some techniques [16], [75] for library migration
adopt the similar approach to across version and lan-
guage/platform migration. For example, Teyton et al. [16]
infer likely API mappings between similar libraries by ex-
amining already-ported code, i.e., changes made to port
an application from using one library’s APIs to another
library’s. It is relatively easy to collect already-migrated
code across framework versions or functionality similar
applications across languages/platforms, but it is unlikely
to have an already-ported application for an arbitrary pair
of analogical libraries. Similar to Gokhale et al.’s work [9],
Santhiar et al. [75] mine similar units tests for migrating
math APIs. Collecting similar unit tests for a few Math
libraries is feasible, but it is difficult to extend this method to
the wide range of analogical libraries that we are concerned
with. Chen et al. [3], [76] extract analogical third-party li-
braries across different programming languages by incorpo-
rating relational, categorical and semantic information from
Stack Overflow. Different from those works about mining
analogical libraries, this study focuses on more fine-grained
similar API extraction. Apart from skip-gram model, we
adopt more advanced algorithm (skip-thoughts model) to
encode API name and documentation similarity which is
more complicated and difficult to embed than tags in Stack
Overflow.

To eliminate this need for already migrated or function-
ality similar code, Pandita et al. [11] adopt text mining to
identify likely API mappings based on the textual similarity
of API names and documents. But they use traditional TF-
IDF based similarity metric which cannot properly handle
lexical gaps in API descriptions from different libraries. In
contrast, we adopt unsupervised RNN model to overcome
the lexical gap issue in API descriptions. Lu et al. [77] and
Gu et al. [59] infer similar APIs across different program-
ming languages from API documents. Different from their
research, our approach incorporates more information such
as API usage, and API names for inferring analogical APIs
and our model is completely unsupervised.

13

Much work has been done on mining API usage pat-
terns [71], [78], [79] and recommending API usage exam-
ples [80], [81]. Their focus is on APIs that are frequently
used together, while our focus is on analogical APIs between
libraries. Analogical APIs may be frequently used with some
other common APIs, but they are unlikely used together.
Furthermore, our approach does not need to explicitly mine
what APIs are often used with analogical APIs, because it
uses unsupervised word embeddings to embed the knowl-
edge of surrounding APIs. Some research works [60], [82],
[83] investigates several applications of API embeddings.
They also adopt word2vec model [12] to embed API call
sequences, but they use attributional similarity of API em-
beddings to determine related APIs within one language
or across two languages. For the one-language scenario,
our Baselinel in Section 5.3.1 is the same as Nguyen's
method, and our relational similarity of API-library embed-
dings outperforms it. For the across-two-languages scenario,
Nguyen’s method requires a corpus of known mapping
samples (e.g., Lucene in Java versus C#) to compute the
transformation matrix between the API embeddings of Java
and C# (as seen in the 1st and 3rd sentences of Section
V.C [60]). Our work deals with 111 pairs of analogical
libraries for which no such known mapping samples ex-
ist. Therefore, Nguyen’s method cannot be applied in our
analogical-libraries setting. RNN models have also been
used for recommending API calls [58] or detecting code
clones [84]. Different from our use of unsupervised RNN
model to embed API name/document semantics, these
works require labelled data for supervised model training,
for example method-comment pairs or method-AST pairs.

7 CONCLUSION & FUTURE WORK

This paper presents a novel unsupervised deep learning
approach for inferring likely analogical API mappings be-
tween third-party libraries. Our approach applies word
embedding techniques to API call sequences, and thus elim-
inates the need for already-ported or functionality similar
applications for reasoning API usage semantics. It adopts
skip-thoughts model, an unsupervised RNN model for
quantifying API description similarity in the presence of
lexical gap. Our approach is the first attempt to incorpo-
rate all API usage, name and document similarities for
inferring likely analogical APIs of third-party libraries. Our
evaluation shows that the three kinds of API similarities
are complementary to each other, and as a whole they can
reliably recommend likely analogical APIs for libraries with
diverse functionalities. To evaluate our approach, we build
the largest ever database of analogical APIs for 583,501 APIs
of 111 pairs of analogical Java libraries. In the future, we
will extend our work to one-to-many and many-to-many
API mappings which complements our current one-to-one
mapping. We will also exploit the power of the crowd who
visits our web application to further evaluate and improve
our approach.

REFERENCES

[1] E Thung, L. David, and J. Lawall, “Automated library recommen-
dation,” in 2013 20th Working Conference on Reverse Engineering
(WCRE 2013): Proceedings: Koblenz, Germany, 14-17 October 2013,
2013, pp. 182-191.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

C. Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration
graphs,” in 2012 19th Working Conference on Reverse Engineering.
IEEE, 2012, pp. 289-298.

C. Chen, S. Gao, and Z. Xing, “Mining analogical libraries in qé&a
discussions-incorporating relational and categorical knowledge
into word embedding,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1.
IEEE, 2016, pp. 338-348.

“Windows phone interoperability: Windows phone api mapping,”
http:/ /windowsphone.interoperabilitybridges.com/porting,
2017.

E. Duala-Ekoko and M. P. Robillard, “Asking and answering ques-
tions about unfamiliar apis: an exploratory study,” in Proceedings
of the 34th International Conference on Software Engineering. I1EEE
Press, 2012, pp. 266-276.

C. Chen, Z. Xing, and L. Han, “Techland: Assisting technology
landscape inquiries with insights from stack overflow,” in Soft-
ware Maintenance and Evolution (ICSME), 2016 IEEE International
Conference on. 1EEE, 2016, pp. 356-366.

C. Chen and Z. Xing, “Mining technology landscape from stack
overflow,” in Proceedings of the 10th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement. ACM,
2016, p. 14.

H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang,
“Mining api mapping for language migration,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1. ACM, 2010, pp. 195-204.

A. Gokhale, V. Ganapathy, and Y. Padmanaban, “Inferring likely
mappings between apis,” in 2013 35th International Conference on
Software Engineering (ICSE). 1EEE, 2013, pp. 82-91.

A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical learning approach for mining api usage mappings for
code migration,” in Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering. ACM, 2014, pp. 457-
468.

R. Pandita, R. P. Jetley, S. D. Sudarsan, and L. Williams, “Dis-
covering likely mappings between apis using text mining,” in
Source Code Analysis and Manipulation (SCAM), 2015 IEEE 15th
International Working Conference on. 1EEE, 2015, pp. 231-240.

T. Mikolov, K. Chen, G. Corrado, and]. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111-3119.

R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun,
A. Torralba, and S. Fidler, “Skip-thought vectors,” in Advances in
neural information processing systems, 2015, pp. 3294-3302.

C. Chen, Z. Xing, and Y. Liu, “What’s spain’s paris? mining
analogical libraries from q&a discussions,” Empirical Software En-
gineering, pp. 1-40, 2018.

C. Teyton, J.-R. Falleri, and X. Blanc, “Automatic discovery of
function mappings between similar libraries.” in WCRE, 2013, pp.
192-201.

Y. Liu, Z. Liu, T.-S. Chua, and M. Sun, “Topical word embeddings.”
in AAAI 2015, pp. 2418-2424.

C. De Boom, S. Van Canneyt, S. Bohez, T. Demeester, and
B. Dhoedt, “Learning semantic similarity for very short texts,” in
Data Mining Workshop (ICDMW), 2015 IEEE International Conference
on. IEEE, 2015, pp. 1229-1234.

G. Chen, C. Chen, Z. Xing, and B. Xu, “Learning a dual-language
vector space for domain-specific cross-lingual question retrieval,”
in Automated Software Engineering (ASE), 2016 31st IEEE/ACM
International Conference on. 1EEE, 2016, pp. 744-755.

C. Chen, Z. Xing, and X. Wang, “Unsupervised software-specific
morphological forms inference from informal discussions,” in Pro-
ceedings of the 39th International Conference on Software Engineering.
IEEE Press, 2017, pp. 450—461.

Y. Huang, C. Chen, Z. Xing, T. Lin, and Y. Liu, “Tell them apart:
distilling technology differences from crowd-scale comparison
discussions,” in Proceedings of the 33rd ACM/IEEE international
conference on automated software engineering. ACM, 2018, pp. 214-
224.

T. Mikolov, M. Karafiét, L. Burget, J. Cernocky, and S. Khudanpur,
“Recurrent neural network based language model.” in Interspeech,
vol. 2, 2010, p. 3.

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]
(33]
(34]

[35]

[36]

(37]

[38]

(39]

[40]

[41]

[42]

[43]
[44]

[45]
[46]
[47]
[48]

[49]
(50]

14

A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in 2013 IEEE international
conference on acoustics, speech and signal processing. I1EEE, 2013, pp.
6645-6649.

M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories. IEEE,
2015, pp. 334-345.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.

C. Chen, Z. Xing, and Y. Liu, “By the community & for the com-
munity: a deep learning approach to assist collaborative editing in
qé&a sites,” Proceedings of the ACM on Human-Computer Interaction,
vol. 1, no. CSCW, pp. 32:1-32:21, 2017.

S. Gao, C. Chen, Z. Xing, Y. Ma, W. Song, and S.-W. Lin, “A neural
model for method name generation from functional description,”
in 2019 IEEE 26th International Conference on Software Analysis,
Evolution, and Reengineering (SANER). 1EEE, 2019.

B. Dagenais and L. Hendren, “Enabling static analysis for partial
java programs,” in ACM Sigplan Notices, vol. 43, no. 10. ACM,
2008, pp. 313-328.

R. Miller and R. Kasparian, Java for artists: the art, philosophy, and
science of object-oriented programming. Page 220, 2006.

G. Palmer, Technical Java: developing scientific and engineering appli-
cations. Page 126, 2003.

R. S. Grover, Programming with Java: A Multimedia Approach. Page
215, 2011.

L. Jolliffe, Principal component analysis. Wiley Online Library, 2002.
A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 2012 34th International Conference on
Software Engineering (ICSE). 1EEE, 2012, pp. 837-847.

Oracle. (2017) How to Write Doc Comments for the Javadoc
Tool. [Online]. Available: http:/ /www.oracle.com/technetwork/
articles /java/index-137868.html

M. Allamanis and C. Sutton, “Mining idioms from source code,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2014, pp. 472-483.
M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting
accurate method and class names,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ~ACM, 2015,
pp- 38-49.

V. Raychev, M. Vechev, and A. Krause, “Predicting program prop-
erties from big code,” in ACM SIGPLAN Notices, vol. 50, no. 1.
ACM, 2015, pp. 111-124.

R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A lan-
guage and infrastructure for analyzing ultra-large-scale software
repositories,” in Proceedings of the 2013 International Conference on
Software Engineering. 1EEE Press, 2013, pp. 422-431.

——, “Boa: Ultra-large-scale software repository and source-code
mining,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 25, no. 1, p. 7, 2015.

R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining
billions of ast nodes to study actual and potential usage of java
language features,” in Proceedings of the 36th International Confer-
ence on Software Engineering. ACM, 2014, pp. 779-790.

L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and
impact analysis of api breaking changes: A large-scale study,” in
Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE
24th International Conference on. 1EEE, 2017, pp. 138-147.

T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim,
“Are code examples on an online qé&a forum reliable?: a study of
api misuse on stack overflow,” in Proceedings of the 40th Interna-
tional Conference on Software Engineering. ACM, 2018, pp. 886-896.
“Eclipse jdt,” http:/ /www.eclipse.org/jdt/, 2017.

“Apache commons io,” http://commons.apache.org/proper/
commons-io/, 2017.

“Guava common io,” https://github.com/google/guava/tree/
master/guava/src/com/google/common/io, 2017.

“Apache commons lang,” https://commons.apache.org/proper/
commons-lang/, 2017.

“Guava common base,” https://github.com/google/guava/tree/
master/guava/src/com/google/common/base, 2017.

“Json,” https:/ /github.com/stleary/JSON-java, 2017.
“Google-gson,” https:/ /github.com/google/gson, 2017.
“Mockito,” http:/ /site.mockito.org/, 2017.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[51]
[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

“Jmock,” http:/ /www.jmock.org/, 2017.

C. Sun, D. Lo, S.-C. Khoo, and]. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing. 1EEE Computer Society, 2011, pp. 253-262.

X. Wang, L. Zhang, T. Xie, J. Anvik, and]J. Sun, “An approach to
detecting duplicate bug reports using natural language and execu-
tion information,” in Proceedings of the 30th international conference
on Software engineering. ACM, 2008, pp. 461-470.

M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic api recom-
mendation using crowdsourced knowledge,” in Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International
Conference on, vol. 1. IEEE, 2016, pp. 349-359.

Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge
gap,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 2018, pp. 293-304.

J. Zhang, H. Jiang, Z. Ren, and X. Chen, “Recommending apis for
api related questions in stack overflow,” IEEE Access, vol. 6, pp.
6205-6219, 2018.

X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embed-
dings to document similarities for improved information retrieval
in software engineering,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 404—415.

X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 631-642.
——, “Deepam: Migrate apis with multi-modal sequence to se-
quence learning,” arXiv preprint arXiv:1704.07734, 2017.

T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen,
“Exploring api embedding for api usages and applications,” in
Proceedings of the 39th International Conference on Software Engineer-
ing. 1EEE Press, 2017, pp. 438-449.

H. P. Luhn, “A statistical approach to mechanized encoding and
searching of literary information,” IBM Journal of research and
development, vol. 1, no. 4, pp. 309-317, 1957.

Q. V. Le and T. Mikolov, “Distributed representations of sentences
and documents.” in ICML, vol. 14, 2014, pp. 1188-1196.

S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline
for sentence embeddings,” in Proceedings of the 5th International
Conference on Learning Representations (ICLR), 2017.

R. Henao, C. Lj, L. Carin, Q. Su, D. Shen, G. Wang, W. Wang, M. R.
Min, and Y. Zhang, “Baseline needs more love: On simple word-
embedding-based models and associated pooling mechanisms,”
in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 1: Long Papers, 2018, pp. 440-450.

R. Singh and N. S. Mangat, Elements of survey sampling. ~Springer
Science & Business Media, 2013, vol. 15.

J. R. Landis and G. G. Koch, “The measurement of observer
agreement for categorical data,” biometrics, pp. 159-174, 1977.
(2017) itext: Comparison with pdfbox. [On-
line]. Available: http:/ /itext.2136553.n4.nabble.com/
Comparison-with-PDFBox-td2140747.html

(2017) jfreecharts vs charts4j. [Online]. Available: https://
stackoverflow.com/questions /1639282 /\#1639446

K. Pearson, “Note on regression and inheritance in the case of
two parents,” Proceedings of the Royal Society of London, vol. 58, pp.
240-242, 1895.

(2017) Unit testing with mocks - easymock, jmock and
mockito. [Online]. Available: http:/ /blogs.justenougharchitecture.
com/unit-testing-with-mocks-easymock-jmock-and-mockito /

E. Moritz, M. Linares-Vésquez, D. Poshyvanyk, M. Grechanik,
C. McMillan, and M. Gethers, “Export: Detecting and visualizing
api usages in large source code repositories,” in Proceedings of
the 28th IEEE/ACM International Conference on Automated Software
Engineering. 1EEE Press, 2013, pp. 646-651.

X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings
of the 40th International Conference on Software Engineering. ACM,
2018, pp. 933-944.

C. Chen and Z. Xing, “Towards correlating search on google and
asking on stack overflow,” in Computer Software and Applications
Conference (COMPSAC), 2016 IEEE 40th Annual, vol. 1. IEEE,
2016, pp. 83-92.

Z. Xing and E. Stroulia, “Api-evolution support with diff-
catchup,” IEEE Transactions on Software Engineering, vol. 33, no. 12,
pp. 818-836, 2007.

[75]

[76]

[77]

(78]

[79]

[80]

[81]

(82]

(83]

[84]

15

A. Santhiar, O. Pandita, and A. Kanade, “Mining unit tests for
discovery and migration of math apis,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 24, no. 1, p. 4,
2014.

C. Chen and Z. Xing, “Similartech: automatically recommend
analogical libraries across different programming languages,” in
Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering. ACM, 2016, pp. 834-839.

Y. Lu, G. Li, Z. Zhao, L. Wen, and Z. Jin, “Learning to infer
api mappings from api documents,” in International Conference on
Knowledge Science, Engineering and Management. Springer, 2017,
pp- 237-248.

H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and
recommending api usage patterns,” ECOOP 2009-Object-Oriented
Programming, pp. 318-343, 2009.

H. Zhong and H. Mei, “An empirical study on api usages,” IEEE
Transactions on Software Engineering, 2017.

L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus,
“How can i use this method?” in Software Engineering (ICSE), 2015
IEEE/ACM 37th IEEE International Conference on, vol. 1. IEEE,
2015, pp. 880-890.

A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig, “Api code recommen-
dation using statistical learning from fine-grained changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 511-522.
H. D. Phan, A. T. Nguyen, T. D. Nguyen, and T. N. Nguyen, “Sta-
tistical migration of api usages,” in Software Engineering Companion
(ICSE-C), 2017 IEEE/ACM 39th International Conference on. IEEE,
2017, pp. 47-50.

Y. Lu, G. Li, R. Miao, and Z. Jin, “Learning embeddings of api
tokens to facilitate deep learning based program processing,”
in Knowledge Science, Engineering and Management, F. Lehner and
N. Fteimi, Eds. Springer International Publishing, 2016, pp. 527-
539.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2016, pp. 87-98.

