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Abstract

Software localization is the process of adapting a software product to the linguistic, cultural
and technical requirements of a target market. It allows software companies to access for-
eign markets that would be otherwise difficult to penetrate. Many studies have been carried
out to locate need-to-translate strings in software and adapt UI layout after text translation
in the new language. However, no work has been done on the most important and time-
consuming step of software localization process, i.e., the translation of software text. Due
to some unique characteristics of software text, for example, application-specific meanings,
context-sensitive translation, domain-specific rare words, general machine translation tools
such as Google Translate cannot properly address linguistic and technical nuance in trans-
lating software text for software localization. In this paper, we propose a neural-network
based translation model specifically designed and trained for mobile application text trans-
lation. We collect large-scale human-translated bilingual sentence pairs inside different
Android applications, which are crawled from Google Play store. We customize the original
RNN encoder-decoder neural machine translation model by adding categorical information
addressing the domain-specific rare word problem which is common phenomenon in soft-
ware text. We evaluate our approach in translating the text of testing Android applications
by both BLEU score and exact match rate. The results show that our method outperforms the
general machine translation tool, Google Translate, and generates more acceptable transla-
tion for software localization with less needs for human revision. Our approach is language
independent, and we show the generality of our approach between English and the other
five official languages used in United Nation (UN).

Keywords Software localization - Neural machine translation - Mobile apps

1 Introduction

Software localization is the process of adapting a software application to a particular lan-
guage, culture, and desired “look-and-feel” of a target market. It is a fundamental part of
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development process for an application to reach global markets and customers. Software
localization process includes many steps, including extraction of need-to-translate text from
graphics, user interface (UI) elements, scripts or other media, creation and maintenance of
terminology glossaries, translation of text to the target language, and adjustment and testing
the text alignment in the UI or other functional elements.

Existing work on software localization focuses mainly on the pre-translation steps, i.e.,
extraction of need-to-translate text (Rich 2011; Wang et al. 2010; Xia et al. 2013). Some
recent work (Muntés Mulero et al. 2012; Alameer et al. 2016) also look into post-translation
UI and functionality issues, e.g., the problems with the visuals or the layout of the applica-
tion due to the string length changes after translations into another language, and proposes
automatic testing approach to identify such issues. However, the translation step, the core
step in software localization has been neglected. The translation step is labor-intensive and
often requires a significant amount of efforts from the development teams. According to
the observation of Alshaikh et al. (2015), among 2,500 open source projects, about 32% of
all localized resource files were committed more than 6 months after the default resource
file was committed. One of the most important reasons is that projects often cannot find a
proper translator to perform the translation.

A possible solution is to use machine translation tools developed in Natural Language
Processing (NLP) community. Indeed, recent years have witnessed the mature and success
of machine translation techniques, such as Google Translate! or Bing Translator.? Stud-
ies (O’Brien 1998; Muntés Mulero et al. 2012) show that the number of words processed
per day by a human translator can be significantly increased, when an efficient machine
translation engine is used and the human translator only needs to improve the machine trans-
lation results in the post-editing phase. Unfortunately, general-purpose machine translation
engines are trained with general corpus and thus lack the knowledge about the terminology
and writing style of a particular domain.

For the purpose of software localization, text of software applications has several char-
acteristics that challenge the effectiveness of general-purpose machine translation engine.
We summarize the challenges below with some English-Chinese translation examples.

— Many words have daily-life meanings, but as domain-specific terms they often do not
need to be translated. For example, “Steam” can be translated as “HIR (vapor), but as
the software name “Steam” (an online game platform), it does not need to be translated.

— Different languages may have unique characteristics that require subtle attentions in
translation. For example, there is no “tense” concept in Chinese words. Although it
could be ignored in general translation without information loss, the software localiza-
tion process may need to consider language unique characteristics to make users feel
that software is originally designed in native language, for example, translating “Like
Tweet” as “BHXFEI (give thumbs up for this tweet), instead of just “E IR
(love tweet).

— Phrase-based statistical machine translation cannot properly deal with the word
sequence in the translations when the sentence contains domain-specific terms (e.g.,
placeholder in the software text i.e., %s) or has a complicated structure. For example, it
is difficult to translate sentences with complicated structure like having a subordinate

Uhttps://translate.google.com
2https://www.bing.com/translator
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clause, e.g., “%183$s requires one or more Google Play services that are not currently
available”.

Due to the above challenges, general-purpose machine translation engines often cannot
address linguistic and technical nuance in translating text of software applications of a par-
ticular domain. Several techniques (Wu et al. 2008; Ren et al. 2009; Zhang et al. 2013)
have been proposed to address the challenges in domain-specific’ machine translation. For
example, in the medical domain, Eck et al. (2004) use the Unified Medical Language Sys-
tem to improve the general machine translation model. Such domain-specific translation
techniques assume the availability of a high-quality dictionary of domain-specific terms
and translations (usually developed by domain experts). The dictionary is used to customize
general-purpose machine translation engines with additional domain knowledge so that the
translation results can be improved. Software has become ubiquitous, and today, it can be
found in just about every device we use as consumers or in our professional life. Devel-
oping a domain-specific dictionary and customizing general-purpose machine translation
engines for software of each application domain would not be cost-effective for software
localization.

In this paper, we present a deep learning based domain-specific machine translator that
is trained with a large corpus of text of software applications for different languages. Our
training corpus consists of millions of aligned dual-language sentences pairs (e.g., English-
Chinese) extracted from language packs of Android applications from Google Play. The
translator can be adopted for translating text in mobile apps for app localization.

Our approach is of a two-stage model. Driven by our collected large-scale parallel corpus,
we first build a dictionary about frequent translation pairs for direct mapping. We then train a
Recurrent Neural Network (RNN) encoder-decoder model (Cho et al. 2014), the state-of-art
deep learning architecture for machine translation, with the help of attention mechanism.

To address the domain-specific problem in translation, we incorporate category informa-
tion in the training process by treating the category as a special input token of the training
sentence pairs. To overcome the problem with rare non-English domain-specific words, we
treat them as out-of-vocabulary words in the machine translation system. We customize the
original machine translation system by the output of a word alignment mechanism. This
word alignment mechanism preserves out-of-vocabulary words in the translation, but their
positions in the translation are still learned by the RNN model.

We carry out the evaluation in terms of BLEU score (Papineni et al. 2002) (a widely used
metric in machine translation) and exact match rate of the translation results by our method.
Our approach achieves 49.51% BLEU score which outperforms the general machine trans-
lation, Google Translate (40.42%) in the testing dataset of Android application text, and
machine translation model without incorporating the domain-specific information. We not
only demonstrate the effectiveness of our translation results between English and Chinese,
but also test its generality of our model in translating English into the other 4 official lan-
guages in UN. The results show that our method work well for software localization in
different language pairs. We also demonstrate the usefulness of our model by conducting
pilot study with human translators involved. The results show that human translators pro-
vided with translations achieved better performance in terms of both satisfactoriness and
translation time.

The main contributions of our work are summarized as followings:

3Note that “domain-specific” in this work refer to the domain of the software engineering, instead of app
category.
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— To our best knowledge, this is the first work to develop a domain-specific machine
translation model for software localization in software engineering domain. We propose
a two-stage approach with not only a dictionary built by association rule mining, also a
neural machine translation model incorporating domain knowledge.

— We are the first to collect a big dataset which is sufficient for effectively training the
domain-specific machine translation model.

— The evaluation of our approach demonstrates the accuracy of our translation results
which outperforms the general machine translation engine, Google Translate.

2 Background

Before explaining our method for machine translation, we first introduce the basic concepts
of the two key techniques, i.e., word embeddings and recurrent neural network, that our
approach relies on.

2.1 Word Embeddings

Word embeddings are dense low-dimensional vector representations of words that are build
on the assumption that words with similar meanings tend to be present in similar context.
Studies (Turian et al. 2010; Mikolov et al. 2013) show that word embeddings are able to
capture rich semantic and syntactic properties (e.g., the morphological forms of one word
such as quick, quickly) of words, compared with one-hot word representation (Salton et al.
1975). Many works (Chen and Xing 2016b; Chen et al. 2017b, 2018c; Huang et al. 2018)
have demonstrated that word embedding works well in software engineering domain.
Continuous skip-gram model (Mikolov et al. 2013) is a recently proposed efficient algo-
rithm for learning word representations using a neural network model. Figure 1 shows the
general structure to train a continuous skip-gram model. The goal of the continuous skip-
gram model is to learn the word embeddings of a center word (i.e., w;) that is good at
predicting the surrounding words in a context window of 2¢ 4 1 words (¢ = 2 in this exam-
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Fig. 1 Continuous skip-gram model
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ple). More specifically, the objective function of the skip-gram model is to maximize the
sum of log probabilities of the surrounding context words conditioned on the center word:

Yoo D logp (wirjlwi) 1)

i=1 —1<j<t,j#0

where w; denotes the center word in a context window of length 2¢ + 1 and w;; denotes
the context word surrounding w; within the context window. n denotes the length of the
word sequence. The log p (wiﬂ Iw,-) is the conditional probability defined using the softmax
Sfunction:

eXp(U,/;)[;_'_j Uw,- )
Lwew eXpVy; vu;)
where v, and v}, are respectively the input and output vectors of a word w in the underlying
a neural network, and W is the vocabulary of all words. Intuitively, p (wi+ j |w,>) estimates
the normalized probability of a word w; ; ; appearing in the context of a center word w; over
all words in the vocabulary. This probability can be efficiently estimated by the negative
sampling method (Mikolov and Dean 2013).

Given word sequences, the model maps words onto a low-dimensional, real-valued vec-
tor space. Word vectors are essentially feature extractors that encode semantic and syntactic
features of words in their dimensions. In this vector space, semantically-similar words are
also likewise close in term of their vectors.

2

p (wiyjlwi) =

2.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is a class of neural networks where connections between
units form directed cycles. Due to its nature, it is especially useful for tasks involving
sequential inputs such as code completion (White et al. 2015), speech recognition (Graves
et al. 2013), text classification (Chen et al. 2018a), and API document encoding (Chen et al.
2019). Compared with traditional n-gram language model (Mikolov et al. 2010), a neural
language model based on RNN can predict a next word by predecessing words with long
distances rather than a fixed number.

The network of RNN includes three layers, that is, an input layer which maps each word
to a vector such as word embedding or one-hot word index, a recurrent hidden layer which
recurrently computes and updates a hidden state after reading each word, and an output
layer which estimates the probabilities of the following word given the current hidden state.
Figure 2 shows the unfolding in time of the computation in RNN’s forward computation. At
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Fig.2 Recurrent neural network
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time step ¢, it estimates the probability of the following word p(w;41|wy, ..., w;) by three
steps. First, the current word w; is mapped to a vector x; by the input layer.

x; = input(w;) 3)

Then, it generates the hidden state /; in hidden layer according to the previous hidden state
h;—1 and the current input x;

ht=ht_1*W+xt*U (4)
where W, U are parameters inside the neural network. Finally, the Pr(w;41|wy, ..., wy) is
predicted according to the current hidden state /;:

Pr(wis1lwi, ..., wy) = g(hy) (5)

During training, the parameters are learned by backpropagation (Werbos 1990) with
gradient descent to minimize the error rate.

3 Data Collection

Unlike general machine translation which can easily utilize translation corpus (e.g., United
Nation’s documents for different languages) for model training, the biggest challenge for
domain-specific machine translation is the lack of domain-specific translation corpus (Pla-
mada and Volk 2013) that includes sufficient domain-specific bilingual sentence pairs. It
is also labor-intensive task to extract language packs of different softwares, which involves
a lot of human efforts such as crawling software packages, reverse engineering, sentence
alignment, etc. In addition, as the language pack of each software normally contains only
hundreds of sentences or phrases, it will require a large number of software applications to
accumulate enough corpus for training a neural machine translation model.

According to our study, mobile applications are always of multi-language packs which
users can select as their preferred display language. Therefore, we crawl Android apps (i.e.,
APK file) randomly from Google Play (2018a). Within the crawling process, we take the
top 100 apps as the seed, and then crawl all their related apps recommended by Google. We
iterate this process for one month from Jun 15, 2017 to Jul 15, 2017. Finally, we totally col-
lect 108,339 apps from Google, and these apps belong to 25 categories* such as education,
entertainment, music & audio, etc in Fig. 3.

As each APK is an executable file, we use Apktool (2018) to decompile the packages and
obtain the resource folder which contain all external files . Note that all strings displayed
in the Android app is stored in one file called “strings.xml” (containing English), and all
translations for the file are stored in separate files which are in folders ended with language
abbreviation® such as values-fr, values-ja, and so on. There are 6 official languages used
in United Nations (2018b) including Arabic, Chinese, English, French, Spanish and Rus-
sian. As English is always the first language adopted in apps in Google Play, the software
localization in this work is targeting at translating English into the other 5 UN languages.

4 Although Google Play distinguishes detailed game category such as cards, racing, puzzle, we take them as
one game category.
Shttps://developer.android.com/guide/topics/resources/localization
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Fig.3 The App distribution in different categories

Therefore, we extract string files of language pairs, and we can see that each piece of text
is attached with a unique ID as seen in Fig. 4. Text in different language is aligned by these
unique IDs within the app, and we build the parallel corpus in this way.

Table 1 shows that how many parallel sentence pairs that we collect between the target
language and English. To our best knowledge, this is the largest multi-lingual parallel app-
specific corpus in Software Engineering domain, and it can enable more future works in
this direction. Note that not all apps contain these 6-language packs, so more than 79K
apps contain Chinese-English and Russian-English pairs, while only 77K apps contain other
language pairs. We then remove the duplicate pairs (i.e., pairs in which both source language
and target language are the same.) and collect millions of sentence pairs for each language
pairs. The sentence length varies across different apps and different languages, we calculate
the distribution of sentence length in each language in Fig. 5. Most sentences are of short
size. For example, 68.1% app sentences in English have no more than 4 words.

-1 B0 Navigate home =] HEERE

@name: abc_action_bar_home_description @name: abc_action_bar_home_description
E Navigate up B string|f: N2 =11

@name: abc_action_bar_up_description @name: abc_action_bar_up_description

1 E%TT More options Bl stringfi- £ 2731

@name: abc_action_menu_overflow_description @name: abc_action_menu_overflow_description

Fig.4 Process of aligning XML files and forming training pairs
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Table 1 Number of sentences and application for each language

Language #Apps #Sentences #Sentences without duplications
Arabic 77,150 6,181,892 1,123,925

Chinese 79,145 6,419,324 780,044

French 77,283 8,297,821 1,508,657

Russian 79,451 7,691,341 1,199,439

Spanish 77,437 8,845,659 1,570,600

4 Software-Specific Translation

Considering the characteristics of mobile apps, we propose a two-stage approach for the
app localization. First, given the input sentence of one language, if it frequently appears
in our corpus, it is directly translated into the target language (Section 4.1). Otherwise, it
will be sent to a neural translator which is build on millions of parallel sentences collected
from apps (Section 4.2). Our neural translator consists of an RNN encoder and decoder
model with attention mechanism(Section 4.2.1) by incorporating app-specific category
information(Section 4.2.2), and copying rare domain-specific terms(Section 4.2.3).

4.1 Dictionary-Based Translation

According to our observation, many apps share some similar text such as log in, register,
search, as these functionalities are common across different apps. Instead of using neu-
ral network based translation, we adopt a light-weight dictionary to directly translate those
commonly-used sentences. We first collect all translation pairs, source sentence (s), tar-
get sentence () in two parallel languages. Then we adopt the bigram association rules
mining (Agrawal et al. 1993; Chen and Xing 2016a; Chen et al. 2016b) for building the
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Fig.5 The distribution of sentence length
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software-specific translation dictionary (Table 2). There are two parameters in association
rule mining:

#translation pairs containing (s and t)

support(s,t) = ; X
pport(s.1) #all translation pairs

. #translation pairs containing (s and t)
confidence(s = t) = P £

#translation pairs containing s

The support value measures how frequently the translation pairs appear in all translation
pairs. The confidence value measures the proportion of the translation pairs containing
both s and r compared with all the translation pairs containing s. Note that traditionally, the
rule mined from association rule mining always contains more than one items in each side
e.g., {A.B, C — > D,E}. As we are trying to assist translation, each side can only contain
one item, i.e., either source or target. To distinguish our approach from traditional ones, we
call it bigram association rules mining.

We use the association rules mining rather than frequent itemset (Borgelt 2012) due to
our observation that some terms may be translated into different words in the target app info.
For example,“View” can be translated into “W i (read) in 875 apps, but translated into
“ZF” (check out) in 4516 apps. To determine which sentences can be directly translated,
we define confidence value to show how united one sentence can be translated into the other
language. The higher score represents that the sentence is more likely to have a common
translation regardless of the category.

However, the higher score also leads to fewer sentences translated by the dictionary. To
analyze the influence of different confidence values to the exact match rate and translated
sentences, we carry out an experiment. The results can be seen in Fig. 6 that the exact match
rate and proportion of affected sentences are negatively related. To achieve the balance
between exact match score and translated sentences i.e., translate more sentences while
preserving reasonably good performance, we set confidence value at 0.5 in our experiments.
The dictionary built from that value can translate over 31.4% of the sentences and achieves
82.6% exact match rate.

Table2 Most frequent sentences

and phrase and corresponding
translation in Chinese
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Chinese translation
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Dictionary-based Translation with Different Confidence
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Fig.6 Performance and influence of our dictionary with different confidence values

4.2 Neural Translation
4.2.1 RNN Encoder-Decoder Model

This model includes two RNN as its main components: one RNN to encode a variable-
length sequence into a fixed-length vector representation, and the other RNN to decode
the given fixed-length vector representation into a variable-length sequence. From a prob-
abilistic perspective, this model is a general method to learn the conditional distribution
over a variable-length sequence conditioned on yet another variable-length sequence, i.e.,
p(y1, ..., y77|x1, ..., x7). Note that the length of the input T and output 7’ may differ.

The architecture of this model for the purpose of software text translation can be seen in
Fig. 7a. The encoder is an RNN that reads each word of an input sequence x sequentially.
As it reads each word, the hidden state of the RNN changes according to (4). After reading
the end of the the input (marked by an end-of-sequence symbol), the hidden state of the
RNN is a summary ¢ of the whole input sequence.

The decoder of the model is another RNN which is trained to generate the output
sequence by predicting the next word y; given the hidden state /(). However, unlike the
basic RNN architecture described in Section 2.2, both y; and &, are also conditioned on
¥:—1 and on the summary feature vector ¢ of the input sequence. Hence, the hidden state of
the decoder at time ¢ is computed by,

hie = f(hi-1, yi-1,€) (6)
and similarly, the conditional distribution of the next word is

Pr(y:lwy, ..., wi—1,¢) = g(hs, yi—1,¢) (7
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(a) The basic structure of the RNN encoder-decoder (b) RNN encoder-decoder with attention and categorical
model information

Fig.7 Neural translation model

The two components of the RNN encoder-decoder are jointly trained to maximize the
conditional log-likelihood

N
1
meaX N Zlogpe Ynlxn) ®)

n=1

where 0 is the set of the model parameters and each (x,, y,) is a pair of input and output
sequence from the training corpus. The model parameters are estimated by backpropagation
with a gradient-based algorithm.

4.2.2 Adding Attention and Category Information

In the original basic architecture of RNN Encoder-Decoder, the decoder is supposed to
generate a translation solely based on the last hidden state from the encoders.

But such vector may not encode all the information, especially for long sentences, so the
decoding process based on it will lead to worse results. According to our observation, differ-
ent parts of input could have different importance to the words in the expected translation.
For example, considering the input “This device does not support this function”, and the
target translation is R ASFFIN L | the word “support” is more important than
“not, this” to the target translation word & Therefore, to avoid the limitation of the
vanilla RNN Encoder-Decoder, we adopt the attention mechanism (Bahdanau et al. 2014)
in this work.

With the attention mechanism, we no longer rely on merely the last hidden output to
represent the entire input description. Instead, we allow the decoder to “attend” to different
parts of the source sentence at each step of the output generation. Figure 7b illustrates
the workflow of the attention mechanism. In the figure, y; is our generated word by the
decoder at the time step ¢, and the x1, x2, . .. x7 are our source sentence words. The attention
model defines individual context vector c;’s for each target word y; as a weighted sum of

@ Springer



Empirical Software Engineering

all historical hidden states &1, ..., ht,, not just the last state in the original RNN Encoder-
Decoder. That is,

Ty
=Y dih ©)
t=1

Where the «;; is the weight that defines in how much of the input x; should be considered
for the output y;. So, if the a4 3 is a large number, this would mean the the decoder pays
much attention to the third state in the source sentence while generating the fourth word
of the target method name. The context vector ¢; depends on a sequence of hidden states
to which an encoders maps the input sentence. Each hidden state 4; contains information
about the whole input sequence with a strong focus on the parts surrounding the i —th word
of the input sequence.

A big advantage of attention is that it gives us the ability to interpret and visualize what
the model is doing. For example, by visualizing the attention weight matrix a when a sen-
tence is translated, we can understand how the model is translating from Fig. 8. The heat
map shows the attention weights of each word in descriptions for the subtokens in method
name.

In Fig. 8b, given the input “<transportation > please contact your driver”, the word

“driver” leads to “FIHL” in the translation, and our model predicts “H|HL” by seeing the
surrounding words “contact”, “your” , and the input category “transportation”. However,
in Fig. 8a, given the input “<tools> select your wifi driver”, the word “driver” leads to
the different translation “IXZNFE/F (launcher) by seeing the word “wifi” and category
information “tools”. These examples show the power of the attention mechanism which can
spot the alignment between the input and the output to help direct the translation.

Apart from the attention mechanism, we also add some domain-specific external infor-
mation to the RNN encoder-decoder model. As we know, the apps in Google Play are
separated into different categories such as game, education, tool, music, etc. According to
our observation, the same word in one language may be translated into different words in
the other languages, as the word in the source language may have different meanings in
different context. For example, retrieve is translated to “HU > (collect the food delivery)in

a business application “Point of Sale”, However, the same word is translated to “GHR>
(search) in a travel application “Fly Scoot”.

HFE
wifi
Lrezipe
68
AHL

<tools> <transportation> 0.5

select please 0.4

your

contact

driver.

(a)

Fig.8 Attention visualizations
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To incorporate the external category information to the model, we first convert the 25
categories into vectors. We assign each category with a specific 25-dimension one-hot vec-
tor i.e., with only one position as 1 but other positions as 0 in the vector. To make the model
easier to train, we append 0 for each category vector so that the size of category vectors is
equal to that of other word embeddings. Then for each input sentence, apart from convert-
ing word vectors of the sentence, we also append the vector of its category where its app
belong to. Therefore, the decoder will also consider the category information in the trans-
lation process. For instance, in Fig. 8a, given the category “tools”, “driver” is translated
to ‘WXBNFEFF (a program that controls devices). However, in Fig. 8b, “driver” is rather
translated to “F /. (people who drives vehicles) in a transportation application.

4.2.3 Addressing Rare Domain-Specific Word Problem

Due to the computationally intensive nature of the RNN training, neural machine transla-
tion systems often limit the size of vocabularies, which is usually the top 30K—80K most
frequent words in each language (Mikolov et al. 2011). That is, they are incapable of trans-
lating rare words which are out of the vocabulary. This is an especially severe challenge
for translation of software application text, because there are many domain-specific terms
which rarely appear and thus are out of frequent-word vocabulary, such as a placeholder
(e.g., %l1$s, ), app name (e.g., XimalayaFM), web address (e.g., http://www.ekiga.org),
email (e.g., rich@kde.org) in Table 3.

When dealing with such out-of-vocabulary words, the original RNN encoder-decoder
model will mark them as UNK in the translation results. For example, the sentence
“Check out %1$s’s Tweet: https://twitter.com/%1” includes two rare words i.e., “%1$s”” and
“https://twitter.com/%]1”. Although the whole sentence can be well translated by the RNN
encoder-decoder model except these two rare words, the unknown mark severely influence
the reading of the translation for human users, and thus cannot satisfy the goal of software
localization.

According to our observation, unlike the general text, many terms in mobile applica-
tions are not necessary to translate such as placeholders, web addresses and other examples
above. They do not have the counterpart translations in another language and it would bet-
ter to preserve them in the translation results. In this work, we customized the original
RNN encoder-decoder model specifically for software-application-text machine translation
by applying a copyable rare word model (Luong et al. 2014). Given a pair of English and
Chinese sentences for training the model, we first tokenize them. Then for each word in
the English sentence, we check whether it is in the vocabulary, and, if not, the word will

Table 3 Rare word examples

Rare word types Examples

Placeholders and tags %s, %13%s, <br>

App names xiami, Doreso, XimalayaFM

Web adress facebook.com/device, twitter.com/RestainoAnthony
Email support@voclab.com, user @example.com
Numbers and metrics 999+, GHz, Mbps

Special characters e, 0

Dates 2018/03/19, MM/dd/yy
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be marked as a rare word, i.e., UNKj,4.x Where index is a unique index of a rare word
in the training corpus. For instance, for sentence “Sent from my %I1$s using %28$s, pow-
ered by appyet.com” in Fig. 9, “%]I1$s”, “%2%$s” and “appyet.com” are marked as UNK,
UNK,, UNK3 after preprocessing the training sentences. The rare words in the corre-
sponding translation in Chinese are also marked using the corresponding UN K, 4¢x i.€.,
the “%I1$s”, “%2$s” and “appyet.com” in the target sentence are also marked as UN K|,
UNK>, UN K3, but note the order differs. The preprocessed English sentence and Chinese
sentence are regarded as a training pair to train the RNN encode-decoder model. Given an
English sentence to be translated, the trained RNN encode-decoder model translates it into
a Chinese sentence. Note that the order of UNKs may be different between the source sen-
tence and the target sentence, while our model can learn to align the order from the big
training data. The special U N K, 4. Symbols in the translation are then mapped back to the
original rare domain-specific words in a post-translation step.

Note that the relative positions of these rare words in the translation may differ from those
in the English sentence. However, with enough training data, the RNN encoder-decoder
model can learn the relative position relation between the source sentence and the translation
result.

5 Evaluation

We evaluate the effectiveness of our translation method by measuring the quality of its trans-
lation of software text, against human reference translations. Specifically, our evaluation
addresses the following questions:

— RQI1: How accurate is our translation method, compared with general machine transla-
tion and the original RNN-based machine translation?

— RQ2: How accurate is our translation method for translating different apps?

— RQ3: How generalized is our model to other language pairs?

— RO4: How useful is our model to human translators for software localization?

5.1 Evaluation Metric
5.1.1 BLEU Score
Let {sq, tg) be a pair of translations in the testing dataset. We say ¢, is the ground-truth

target translation for source input s,. Let #,, be the predicted translation for the s, using our
domain-specific translator.

Original Sent from my %1$s using %2%s, powered by appyet.com
Pre-process Sent from my UNK; using UNK,, powered by UNK,
Translation 3 UNK, MEHY UNK; %35, UNK; SRt 45

| / |
$s

Post-process A w28sM A %1$s k3%, appyet.com R HF

Fig.9 The process to deal with rare domain-specific words
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The first metric we use is exact match rate, i.e., the percentage of testing pairs whose
tg exactly match ¢,. Exact match is a binary metric, i.e., O if any difference, otherwise
1. It cannot tell the extent to which a predicted translation differs from the ground-truth
translation. For example, no matter one or 100 differences between the two translations,
exact match will regard them as 0.

Therefore, we use BLEU (Bilingual Evaluation Understudy) (Papineni et al. 2002), an
automatic evaluation measure widely used in machine translation studies. BLEU auto-
matically calculates the similarity of machine-generated translations and human-created
reference translations (i.e., ground truth). BLEU is defined as the product of “n-gram
precision” and “brevity penalty” as:

N
BLEU = BP % exp <Z wnlogpn> (10)

n=1

where each p,, is the precision of the n-grams, i.e., the ratio of length n word subsequences
generated by the machine translation system that are also present in the human reference
translation. w,, is the weight of different length of n-gram summing to one. It is a common
practice (Sutskever et al. 2014) to set N as 4 and w, = % However, some texts of software
are very short sentences, especially text in Ul components such as “file” or “save”, which
are shorter than 4 grams. Therefore, for long sentences, we still set N as 4 and w, = %
For sentences whose length is smaller than 4, we set N as the minimum length of machine-
generated translation and human reference translation and w, = %

BP is the brevity penalty which prevents the system from creating overly short

hypotheses (that may have higher n-gram precision). B P is defined as

1 c>r

r 11
At c<r an

BP = {
where r is the length of human reference translation, and ¢ is the length of machine-
generated translation. BLEU gives a specific real value with range [0,1] and is usually
expressed as a percentage. The higher the BLEU score, the similar the machine-generated
translation is to the human reference. If the translation result completely equals to the
human reference, the BLEU score becomes 100%. In the following paper, we will use the
percentage form of the BLEU score.

5.1.2 Exact Match

One most important metric of evaluating a NMT system which is used for software local-
ization is to what extent its translation can be directly used for localization. In this work, we
use exact match rate to measure this ability of NMT systems. Exact match is defined as the
proportion of translations which are exactly same as the ground truth:

#exactly translated sentences
ExactMatch = - (12)
#all testing sentences

Note that although the higher exact match rate always leads to higher BLEU score, but these
two metric do not rigidly positively correlate.
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5.2 RQ1: Comparison with Existing Machine Translation Techniques
5.2.1 Evaluation Setup

In this experiment, we use 663,037 data of our translation corpus as the training data,
58,503 data as the validation data to tune the model parameters, and the rest 58,504 data for
testing the translation results.® We have checked many software localization tools such as
Transifex,” Crowdin® and smartling.” Most of them provide a platform to assist developers
and translators collaboratively work on software localization. Many of them do not provide
translation functionality but ask the translator to give the manual translation. Some of the
platforms (e.g., Transifex) directly embed existing automatic translation tool like Google
Translate inside. Therefore, we take Google Translate as the baseline for the comparison.
We compare our domain-specific translation method with Google Translation in term of the
BLEU score and exact match rate. We use Google Translate API'? to obtain the translation
results for the testing data. Our model is based on neural network, so we also compare with
phrased-based machine translation model. In this work, we adopt the state-of-the-art phrase-
based machine translator, Phrasal (Green et al. 2014) as the baseline. To be fair, we have
developed a domain-specific tokenizer and fine-tune the parameters for Phrasal. In addi-
tion, we examine if our customized RNN encoder-decoder model can improve the BLEU
score over the original RNN encoder-decoder model. Finally, we further explore the rela-
tionship between translation accuracy and sentence length to better understand our model.
For brevity, we refer to the Google Translate as GT, the original RNN encoder-decoder as
2RNN, and our customized model as C-2RNN.

5.2.2 Results

The BLEU score of the translation results by different translation methods can be seen
in Table 4. The performance when applying original 2RNN without any customization is
slightly worse than that of Google Translate. That is because Google Translate now also
leverages neural-machine translation model as their backbone (Wu et al. 2016), and their
model is rather large with tens of multi-layer neural network trained on tremendous corpus
for long time which can only be afforded by Google. Therefore, it is very likely that Google
Translate outperforms the naive 2RNN even if it is trained on domain-specific dataset. The
Phrasal has better performance than that of Google Translate, and it has achieved 41.65%
BLEU score and 0.44 extract match rate.

With adding attention, category, or dictionary, the performance of 2RNN has been
boosted to some extent. For example, in term of exact match rate, the attention, cate-
gory information, copy mechanism and dictionary can bring 30.7%, 27.9%, 29.0% ,48.4%
increase to the original 2RNN model. The results show that our model which incorporates
all customization steps significantly outperforms the other three baselines. Our model can
achieve 49.51% BLEU score, which is 22.5%, 29.9%, 18.87% higher than that of Google

%We do not use cross validation for evaluation as the training process takes a long time on our PC.
7hittps://www.transifex.com/

8https://crowdin.com/

“https://www.smartling.com/

10This indeed limits the scale of our experiment because it is a paid service to use Google Translate API for
large-scale translation (https://cloud.google.com/translate/v2/pricing).
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Table 4 Translation accuracy

Approach BLEU % Exact match
GT 40.42 0.249
Phrasal 41.65 0.44

2RNN 38.12 0.283
2RNN with attention 42.55 0.37

2RNN with category 39.8 0.362
2RNN with copy mechanism 41.66 0.365
2RNN with dictionary 44.69 0.42
C-2RNN 49.51 0.471

Translate, the original RNN encoder-decoder model, and Phrasal respectively. In term of
extract match rate, our model also obtain the best performance with 0.471, which is also
89.2%, 66.4% higher than the other two baselines.

For reference, an earlier study (Holzer et al. 2011) conducted in 2011 shows that Google
Translate can achieve a BLEU score of about 49% in the general English-Chinese trans-
lation. However, even with several updates of Google Translate during the past 5 years,
its BLEU score for software text translation is only 40.42%. The reason is that Google
Translate is designed for common translation tasks and lacks support for translation under
domain-specific scenarios. For instance, consider the sentence “be capable with any launch-
ers” in Table 5. This sentence belongs to an application in “tools” category, and the word
“launcher” has to be translated to %% [H” (desktop). However, as Google Translate do
not incorporated the category information, this word is translated to Rt (ejector or
projector), which is improper in the scenario of a desktop tool application.

Besides, the sentence “boost your memory now” should be translated to
“IIAE IR B 7 However, Google Translate translated “memory” to “igfe 71
(human memory), while it actually refers to the RAM of a mobile device and should be
translated as “PNl 77, This confirms our assumption that general translation is not suitable
for software localization tasks.

The results of our model also demonstrate that our model has the ability to tackle the
domain-specific translation problems discussed in Section 1.

—  According to Table 5, in sentence “start new Granny game”, the word “Granny”, which
refers to the name of a game instead of actual grandmother, is preserved in the transla-
tion of our model. This indicates that our model can correctly handle the translation of
domain-specific words.

— The sentence “keep device alive” in Table 5 is translated to LRFFILFIZIT. If the
word “alive” is translated to “TH&" (living) such as Google Translate did, users may
still able to understand this sentence but it sounds weird in Chinese since “I& & is often
used to describe living creatures. However, though “BAT” (running) has no direct rela-
tionship with word “alive”, our model still picks the most nature and proper translation
given the subject of the sentence is “device”.

— Google Translate and other machine translation tools lacks support for translating
domain-specific tokens such as placeholders and XML texts. For example, the transla-
tion of placeholders “%1$s” is “%]1 $ s”, which includes undesired spaces; Translation
of “<heading> Reminder < / heading>" is “<heading> #&/% < / heading>", where
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Table 5 Translation examples: our model C-2RNN versus Google Translation

Source Category C-2RNN GoogleTranslate
credit Business B (points) #5 (academic credits)
generic wizard Personalization RS (guide) BRI (sorcerer)
be capable with Tools SEFTREARE SEMAHERE (ejector)
any launchers (desktop)
report comment Communication #4iF2 (inform #EFIL (neutral meaning of report)

max export size

are you sure to
dismiss this

group
keep device

alive
boost your
memory now
start new
Granny game?
web
<heading>
Reminder

< /heading>

Media and Video

Comminication

Lifestyle

Tools

Games

Productivity

Tools

offence)
BREHRT (output)
TSI O P S S

(close, chat group)
RFFRFIEMN (running)

ITEIE T
(accelerate, RAM)
REETFIAHTH Granny
4 (App name)?
M (website)

<heading > &

< /heading>

bl

REART (sell overseas)
I SRRIX /M (fire, team)

=

RAFEAEY (living)

IHERFHRIIEIZY). (improve, human
memory)
FEURFT I R ? (grandma)

BRI (paper volumn)
< HRA > PR </ FR > (heading should

be preserved)

“heading” in the angle brackets are supposed to be preserved in the translation since
they are part of the XML grammar. Refining these translations from Google Translate
requires extra time and labor. This problem is tackled by our model which has elabo-
rately designed data processing pipeline. The translations of the above two example are
the same as expected.

We then further explore those sentences that are not translated very well by our method.
We find that the length of the sentence is the most crucial factor. As Fig. 10 shows, the longer

BLEU Score

09
< 2RNN » 2RNN
< C-2RNN 08 / C-2RNN
GT 07 / GT
Phrasal o Phrasal
T o6
o
§ os
©
= 04
=
3
< o3
w
02
0.1 -
RN =N
0 )|
2 3 4 7 8 9 10 11 12 13 14 15 2 5 6 7 8 9 10 11 12 13 14 15

Sentence Length
(a) BLEU Score

Sentence Length

(b) Exact Match

Fig. 10 The relationship between the BLEU score / exact match rate and the sentence length
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the sentence, the lower the BLEU score for the three models. For short text, our model has
much higher BLEU score and exact match rate than that of baselines. But considering the
decreasing ratio, we can see that our customized RNN model decrease relative faster in term
of the BLEU score, compared with Google Translate and original RNN model. It means
that when dealing with the long sentences such as sentences with more than 15 words, the
vector representation may not capture all the information.

There are several factors which may influence the effects of long-sentence transla-
tions. According to our observation, we find that although some of our translation does
not match the ground truth, the translation still make sense. We have randomly sampled
100 wrong translations, and categorised them into different types. Among the 100 sam-
pled sentences, 52 of them are wrong translations with major problems including missing
words, repeating words or translating words incorrectly. Either the meaning or structure
of these translations are twisted from the ground truth, which means they are consid-
ered failure translations of the model. The remaining 42 sentences can serve as eligible
alternatives for the expected translations. 1) the voice of our translation is different from
that of target. For example, there is one sentence in our training corpus “your sched-
ule has been saved successfully!”. This sentence is translated to E R R A IR &) !
(active voice) by our model. However, the ground truth is TR R SR R 77 |
(passive voice). The changed voice sentences consists of 22.9%(11 out of 48) of this
type of sentences. 2) the synonyms and abbreviations make our translation different
from ground truth, though they are both right. For example, the ground truth transla-
tion of “failed to get last SMS sender” is “TIEIRE| e ﬁ%ﬂilﬁ% while it is
translated to /N AEFRHUE 5 15 B9 & £ A\ by our model. In this example, the pairs
(75‘72, ﬂ%ﬁé, failed), (?Ef?lj, XfEX get), (E%% ) Eﬁ:j\, sender) are of the same mean-
ing but expressed in different forms. We have counted the translation of word “sender”, and
find that 94 out of 146 prefer “Eﬁd\”, while only 52 out of 146 use “KIEE. Among
the 48 wrong translations that make sense, 37 of them are due to using synonyms (77.1 %).
Therefore, the exact match rate of our model actually is highly underestimated especially
for long sentences.

However, for software localization tasks, software text are usually short sentences. Sen-
tences longer than 30 words account for only a very small portion (about 0.8% of our
translation corpus).

5.3 RQ2: Translation Across App Categories
5.3.1 Evaluation Setup

We train our translation model based on a translation corpus of the collected corpus. To
check that if our trained translation model can be adopted for other Android applications, we
randomly select another 40 apps that are not in our dataset. For these 40 apps, 20 of them are
popular with at least 1 million installations, and the other 20 apps are unpopular with instal-
lation number less than 10,000. Note all of these apps contain more than 100 translation
pairs, and they belong to 17 categories. These applications cover a wide range of appli-
cation domains, including social (Facebook), music and audio (SoundCloud), media and
video (Youtube, Yarn), communication (Gmail, Firefox), tools (Google Play, Boomerang),
lifestyle (Uber), and business (Amazon).
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5.3.2 Results

Table 6 summarizes the information of the selected 20 popular apps and the translation
results. We calculate the BLEU score and exact match rate by comparing the translation
results using our model or Google Translate with the human reference translations. The
average BLEU score is 50.434% (slightly higher than the average BLEU score (49.51%) of
translation test data), and the average exact match rate is 0.564 (much higher than the aver-
age exact match rate (0.471) of Android translation test data) because that the popular apps
always contain more standard translation than other unpopular apps. These results demon-
strate the increased performance of our translator. In terms of BLEU score, Instagram yields
the best result (69.92%), while the worst result is Google Play (23.14%). The reason might
be that Google Play contains the most sentences (4622) than other applications and a great
proportion of them are very long. According to Fig. 10, sentence length have substantially
effects on BLEU score. In terms of exact match rate, the best and worst results are also
Instagram (0.7) and Google Play (0.44). This is because Instagram contains more frequent
sentences and phrases than other applications.

For unpopular apps, we do not see any big difference from popular apps. The average
BLEU score and exact match rate for unpopular apps is 51.06%, 0.567, while 50.434%,
0.564 for popular apps. In contrast, Google Translate greatly varies a lot when consid-
ering popular apps (0.322 exact match) and unpopular ones (0.273 exact match). Such
results demonstrate that our model is robust to no matter popular apps, unpopular ones or in
different categories (Table 7).

5.4 RQ3: Generalization Across other Languages
5.4.1 Evaluation Setup

We have demonstrated the our model works well in English-Chinese app localization.
Apart from English, there are another 5 official languages used in United Nations (2018b)
including Arabic, Chinese, French, Spanish and Russian. As we are highly concerned with
software localization, we report the performance of our model in translating English into
the other 5 languages in this section. The results are presented in Table 8. In addition, we
also carry out the experiment about software internalization i.e. translating text from other
languages to English, to further demonstrate the generalization of our model.

5.4.2 Results

Table 8 shows the BLEU score for the google translate and our model for translation
between English and the other five UN official languages (Arabic, Chinese, French,
Spanish, Russian).

In terms of BLEU score, our model outperforms Google Translate in all five languages.
The best BLEU score across all five languages achieved by our model is Chinese, which
is 49.51%, while French has the lowest BLEU score (25.61%). But compared with Google
Translate, our model outperforms Google Translate in all five language-pair translations.
Our model has the biggest boost than Google Translate in translating English to Russian,
from 17.77% to 33.01% which means 85.8% increase. The smallest boost is to translate
from English to Arabic from 25.67% to 28.95%, but it is still 12.8% increase. The average
31.3% performance boost demonstrate the generalization of our model to different datasets.
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Table 8 Translation result on 5 official languages of UN (BLEU Score)

Target #Sentence pairs C-2RNN 2RNN GoogleTranslate
Arabic 84,294 28.95 24.80 25.67
Chinese 58,503 49.51 38.12 40.42
French 113,149 25.61 20.15 23.48
Spanish 117,795 35.97 28.37 28.54
Russian 89,958 33.01 18.45 17.77

For software internationalization, the experiment results can be seen in Table 9. The
results shows that the performance of 2RNN is similar to that of Google Translate. But, our
customized model (C-2RNN) still outperforms the other two baselines in the experiment.
In addition, the Bleu score for using our model for localization and internationalization
respectively is similar. It further demonstrates the robustness and generality of our model,
to some extent.

5.5 RQ4: Usefulness of our Translation Model
5.5.1 Evaluation Setup

While the exact rate of our translation model is not perfect and cannot be directly applied
in practice, we still believe that human translators may save time and improve translation
quality if provided with translations generated by our model. To show the usefulness of
our tool, we carry out an experiment to compare the working efficiency of translators with
our tool and without our tool. We first randomly select 8 apps which are in the experi-
ment of Section 5.3. For each of them, we randomly take 50 sentences for translations. We
recruit two participants (T1, T2) who are Chinese master students in computer science with
very similar English capability. Their latest IELTS (International English Language Testing
System) scores are all 6.5, and they are all recognized as certified translators by NAATI
(National Accreditation Authority of Translators and Interpreters) in Australia. They are
assigned with these English text with the background of this app i.e., functionality, cate-
gory, etc. Participant T1 will be given translations generated by our model, while participant
T2 translate the text from scratch. They are allowed to use tools such as dictionaries (both
paper-based and electronic) for looking up unfamiliar words while translating. We then
measure how much time it takes to finish the translation and we compare the results with
the ground truth. All the translation text are then forwarded to another PhD student who has
experience in software localization to judge the x of the translation with marking as 5-point
likert score (1 as completely unsatisfied and 5 as perfect).

Table9 Translation result on 5 official languages of UN (BLEU Score)

Target #Sentence pairs C-2RNN 2RNN GoogleTranslate
Arabic 84,294 27.31 20.16 24.73
Chinese 58,503 48.69 42.06 41.98
French 113,149 25.50 23.60 23.39
Spanish 117,795 33.12 26.99 28.26
Russian 89,958 32.58 21.83 20.49
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5.5.2 Results

Figure 11 presents the results of our experiments. The average 5-point likert score of T1’s
translation without our tool is 3.59, while T2 achieves 4.07 (Fig. 11a). In terms of transla-
tion time, the average time used to translate 50 sentences for T1 is 815.5s, while the number
for T2 is only 424s (Fig. 11b). These results indicate that the translator provided with trans-
lations generated by our model can obtain 13.3% performance boost with using only half of
translation time. We have conducted paired two-tailed tests (Rice 1989) to compare trans-
lation quality and time of translator T1 and T2. The p-values of both experiment results
(translation quality and time) is lower than 0.01 which indicates that our conclusion is sig-
nificant. Therefore, these results demonstrate the usefulness of our model for assisting text
translation in software localization.

6 Threats to Validity
6.1 Amount and Quality of Training Data

Deep learning techniques like RNN require a large amount of data for model training. We
have collected more than half million bilingual sentence pairs. Although not comparable
to the amount of data used for training general machine translation models, it is sufficient
to train a prototype model which can outperform the general machine translation, Google
Translate.

All translations in our dataset are contributed by thousands of apps on the Google Play
platform. Some apps may be of poor quality and that may further lead to unstable transla-
tion quality. But on Google Play, many apps are of commercial purpose, and the software
localization may determine if they can conquer more markets in the world. This motivation
guarantees the translation quality to some extent.

Note that these translations from apps may not all be human translations. Instead, some
of them may be automatically translated by some tools. To check if the collected paral-
lel corpus are from human translators, we randomly sample 50 apps for manual checking.
These 50 apps are diverse, covering 17 categories including finance, communication, tools,
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etc with installation number from 10,000 to 10,000,000, and rating score from 3 to 5. There
are 41 free apps and 9 apps with in-app purchases among the 50 apps. As we are only
familiar with English and Chinese, the first author in this paper manually checks if the Chi-
nese translation from English text is from human or machine. To help judge the translation
source, he uses online translation tools including Google Translate!! and Youdao Transla-
tor.!2 The results show that among 50 apps, no app solely uses online machine translation
tools.!3 Although some translations are very similar to the results from online machine
translation tools, we can still see some modification from human translators such as word
order changes, tense difference, etc. For example, in an app the sentence “please give us
five star” is translated to “I5 37 F A TE> (please support us), while the direct transla-
tion (as well as translated by Google Translate) should be “UHETA T LFUE . From this
pilot study, it shows that to some extent, the collected corpus are from human translators or
at least modified by human translators. Maybe some translations are from translation tools,
but the experiment shows that most translation data collected in this work is from human
translators or at least edited by human translators.

Although translations from different apps may not be the same for the same sentence,
they can increase the diversity of the training data to make our model more robust. In the
future, we will try to collect more dataset from different resources e.g., IOS or website to
train our model.

6.2 Parameter Tuning

Deep learning algorithms are computation-extensive and our large-scale dataset makes the
training process rather long. In this work, we do not experiment many different parameter
settings due to the time and computation constraint, but we select the model parameters
according to our previous experience Chen et al.(2016a, c). In the future, we will train our
model with more powerful machines equipped with more GPUs to speed up the training
process and try different parameter combinations to better tune our translation model.

7 Related Work

In this section, we first review research progress in software localization. Then we
describe related work for machine translation, especially domain-specific machine transla-
tion. Finally, we introduce other research work that applys machine translation methods in
software engineering tasks.

7.1 Software Localization

Among the 7.4 billion people in the world,'* only 330 to 360 million people"® speak
English. To make people all over the world have access to a software product or service,

Uhttps://translate.google.com/

Zhttp://fanyi.youdao.com/

13The detailed checking results can be found in https://sites.google.com/view/domainspecifictranslation/
4nhttps://en.wikipedia.org/wiki/World_population
https://en.wikipedia.org/wiki/English-speaking_world

@ Springer


https://translate.google.com/
http://fanyi.youdao.com/
https://sites.google.com/view/domainspecifictranslation/
https://en.wikipedia.org/wiki/World_population
https://en.wikipedia.org/wiki/English-speaking_world

Empirical Software Engineering

internationalization and localization of the software are necessary. Localization is the pro-
cess of adapting internationalized software for a specific region or language by adding
locale-specific components and translating visible text of software.

At the early stage of development, developers may not consider the localization process
due to various reasons. Therefore, many methods have been proposed by researchers to
help developers spot code which may need to analyze (Xia et al. 2013), locate need-to-
translate constant strings (Wang et al. 2010), and extract text (Rich 2011) from the software
for translation. After translation, the old UI layout may not be suitable for the translated
text in the new language. Some researchers carry out studies about how to identify such
issues (Alameer et al. 2016) and automatically adjust the UI elements (Fitzpatrick et al.
2013; Burukhin et al. 2007). Different from these works which focus on pre-translation and
post-translation steps in the process of software localization, our work focus on the core and
the most labor-intensive step of software localization, i.e., the translation of software text.
By complementing existing techniques with our work, software localization process can be
better automated.

It is worth to see how industry work with software localization. To enhance software
localization process, many software localization management systems are developed such
as phraseapp (2018c), Smartling (2018d), Transifex (2018e), etc. All of these tools pro-
vide software localization platforms for supporting collaboration between developers and
translators, product management, automated workflow for maintenance. However, they still
require translators to manually translate the software text and put the translation into the
platform instead of directly generating the translation results. Our domain-specific trans-
lator can be incorporated into the existing software localization tool to better support the
software localization process.

7.2 Machine Translation

Machine Translation is an automated translation of text without human involvement. There
are two main-stream methods for machine translation. The first type is based on the statistics
(mostly phrase-based (Koehn et al. 2003; Zens et al. 2002)), called statistical machine trans-
lation. However, this type of methods always require many preprocessing such as sentence
segmentation (Chung and Gildea 2009), phrase alignment (Fraser and Marcu 2007) and so
on. In addition, the performance of statistical machine translation decreases significantly, in
the face of new sentence patterns which do not appear in the training corpus. To overcome
these shortcomings, the other kind of machine translation is based on neural networks called
neural machine translation. In our work, we also adopt the state-of-the-art neural machine
translation model, the RNN encoder-decoder model (Cho et al. 2014; Sutskever et al. 2014).

However, as general machine translation is always not effective for domain-specific
text, it is necessary to develop domain-specific translation models. Due to the lack of
domain-specific training data, most domain-specific machine translation approaches targets
at domain adaptation of general machine translation models. Most of them (Wu et al. 2008;
Ren et al. 2009; Zhang et al. 2013; Eck et al. 2004) post-process the translation results
from general machine translation by referring to some domain-specific term dictionary or
glossary. However, the required bilingual domain-specific term glossary is hard to build
for software applications and it may be soon out-of-date because of the rapid development
of application domains. Furthermore, considering some unique characteristics of software
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text translation, e.g., some software names do not need to be translated, we customize the
original neural machine translation with a special word alignment mechanism to handle
out-of-vocabulary words.

7.3 Machine Translation in Software Engineering

Although machine translation has not been used for software localization, it has been
adopted into software engineering domain for some other translation tasks such as translat-
ing the original posts into the edited posts in Stack Overflow (Chen et al. 2017a), translating
the mobile Ul into the source code (Chen et al. 2018b), translating the method description
into the method name in Java (Gao et al. 2019), or translating the Chinese queries to English
questions (Chen et al. 2016c). Nguyen et al. (2013, 2014, 2015) adopt statistical machine
translation for language migration especially between java and c#. Oda et al. (2015) use
phrase-based machine translation to automatically generate pseudo-code from source code.
Gu et al. (2016, 2017) formulate pairs of natural-language query and corresponding API
sequence as a machine translation problem so that developers can search API sequence by
the natural-language query. And, they further put the code comments as a bridge between
API sequences across different language to support software migration. Tjalling (2016)
and Hu et al. (2018) use the similar neural machine translation method to generate com-
ments from the code. Gu et al. (2018) have developed a code search tool for assisting code
searching and reusing code for developers with deep neural network. Different from exist-
ing work, we apply neural machine translation model for the purpose of domain-specific
natural-language translation for software localization.

8 Conclusion and Future Work

This work targets at an important development activity in software engineering, i.e.,
software localization, especially app translation. Specially, we focus on domain-specific
machine translation for software localization, which is the core step for the success of
software localization but receives little attention from the community. Our empirical study
demonstrates that general machine translation models is not suitable for the translation of
software text which has its own linguistic and technical characteristics. In this paper, we
present a RNN-based domain-specific machine translation model. Considering the char-
acteristics of software text, we customized the original RNN encoder-decoder model by
addressing domain-specific rare word problem and training the model using a large-scale
domain-specific translation corpus collected from the apps in Google Play. The results
of experiments demonstrate the effectiveness of our model, compared with the general
machine translation, Google Translate.

In the future, we will continue to improve the model by tuning its parameters and training
it on larger dataset. In addition to Android app localization, there are no intrinsic barri-
ers to apply our model to more platforms for software localization, such as I0S, website,
desktop software, etc. We will incorporate our method into other research works such as
locating need-to-translate text (Wang et al. 2010) and adjusting the UI layout after text
translation (Burukhin et al. 2007) to better automate software localization process. Another
interesting direction is to apply our translation method into other software engineering
tasks which could be formulated as translation problems, such as application migration
across programming languages, analogical libraries recommendation, and pesudo-code
generation.

@ Springer



Empirical Software Engineering

References

Agrawal R, Imieliiski T, Swami A (1993) Mining association rules between sets of items in large databases.
In: ACM Sigmod Record, ACM, vol 22, pp 207-216

Alameer A, Mahajan S, Halfond WG (2016) Detecting and localizing internationalization presentation
failures in web applications

Alshaikh Z, Mostafa S, Wang X, He S (2015) A empirical study on the status of software localization in open
source projects

Apktool (2018) A tool for reverse engineering android apk files. https://ibotpeaches.github.io/Apktool/

Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate.
arXiv:14090473

Borgelt C (2012) Frequent item set mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 2(6):437-456

Burukhin A, Gadre MA, Aldahleh AM, Farrell T, Larrinaga-Pardo JL (2007) Dynamically providing a
localized user interface language resource. US Patent App. 11/869,083

Chen C, Chen X, Sun J, Xing Z, Li G (2018a) Data-driven proactive policy assurance of post quality in
community q&a sites. Proceedings of the ACM on human-computer interaction 2(CSCW):33

Chen C, Gao S, Xing Z (2016a) Mining analogical libraries in q&a discussions—incorporating relational and
categorical knowledge into word embedding. In: 2016 IEEE 23rd international conference on software
analysis, evolution, and reengineering (SANER), vol 1. IEEE, pp 338-348

Chen C, Su T, Meng G, Xing Z, Liu Y (2018b) From ui design image to gui skeleton: a neural machine
translator to bootstrap mobile gui implementation. In: Proceedings of the 40th international conference
on software engineering. ACM, pp 665-676

Chen C, Xing Z (2016a) Mining technology landscape from stack overflow. In: Proceedings of the 10th
ACM/IEEE international symposium on empirical software engineering and measurement. ACM, p 14

Chen C, Xing Z (2016b) Similartech: automatically recommend analogical libraries across different program-
ming languages. In: 2016 31st IEEE/ACM international conference on automated software engineering
(ASE). IEEE, pp 834-839

Chen C, Xing Z, Han L (2016b) Techland: assisting technology landscape inquiries with insights from stack
overflow. In: 2016 IEEE international conference on software maintenance and evolution (ICSME).
IEEE, pp 356-366

Chen C, Xing Z, Liu Y (2017a) By the community & for the community: a deep learning approach to
assist collaborative editing in q&a sites. Proceedings of the ACM on Human-Computer Interaction
1(CSCW):32

Chen C, Xing Z, Liu Y (2018c) What’s spain’s paris? mining analogical libraries from q&a discussions.
Empir Softw Eng, pp 1-40

Chen C, Xing Z, Liu Y, Ong KLX (2019) Mining likely analogical apis across third-party libraries via
large-scale unsupervised api semantics embedding. IEEE Trans Softw Eng

Chen C, Xing Z, Wang X (2017b) Unsupervised software-specific morphological forms inference from infor-
mal discussions. In: Proceedings of the 39th international conference on software engineering. IEEE
Press, pp 450461

Chen G, Chen C, Xing Z, Bowen X (2016c) Learning a dual-language vector space for domain-specific
cross-lingual question retrieval. In: 31st IEEE/ACM international conference on automated software
engineering (ASE), IEEE/ACM

Cho K, Van Merriénboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning
phrase representations using rnn encoder-decoder for statistical machine translation. arXiv:14061078

Chung T, Gildea D (2009) Unsupervised tokenization for machine translation. In: Proceedings of the 2009
conference on empirical methods in natural language processing: Volume 2-Volume 2, Association for
computational linguistics, pp 718-726

Eck M, Vogel S, Waibel A (2004) Improving statistical machine translation in the medical domain using the
unified medical language system. In: Proceedings of the 20th international conference on computational
linguistics, association for computational linguistics, p 792

Fitzpatrick C, Whelan JP, Doyle RP, Lane JG, McHugh B, Farrell T, Barnes P, McQuaid AM, Mowatt D
(2013) Dynamic screentip language translation. US Patent 8,612,893

Fraser A, Marcu D (2007) Measuring word alignment quality for statistical machine translation. Comput
Linguist 33(3):293-303

Gao S, Chen C, Xing Z, Ma Y, Song W, Lin SW (2019) A neural model for method name generation from
functional description. In: 2019 IEEE 26th international conference on software analysis, evolution, and
reengineering (SANER), vol 1. IEEE

@ Springer


https://ibotpeaches.github.io/Apktool/
http://arxiv.org/abs/14090473
http://arxiv.org/abs/14061078

Empirical Software Engineering

Graves A, Mohamed A-r, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013
IEEE international conference on acoustics, speech and signal processing. IEEE, pp 6645-6649

Green S, Cer D, Manning C (2014) Phrasal: a toolkit for new directions in statistical machine translation. In:
Proceedings of the ninth workshop on statistical machine translation, pp 114—121

Google Play Store (2018a). https://play.google.com/store

Gu X, Zhang H, Kim S (2018) Deep code search. In: Proceedings of the 40th international conference on
software engineering. ACM, pp 933-944

Gu X, Zhang H, Zhang D, Kim S (2016) Deep api learning. arXiv:160508535

Gu X, Zhang H, Zhang D, Kim S (2017) Deepam: migrate apis with multi-modal sequence to sequence
learning. arXiv:170407734

Holzer H, Ant F, Nogueira D, Semolini K, Martin C, Aiken M, Balan S, Zetzsche J, Avval SF, Carl M et al
(2011) An analysis of google translate accuracy

Hu X, Li G, Xia X, Lo D, Jin Z (2018) Deep code comment generation. In: Proceedings of the 26th conference
on program comprehension. ACM, pp 200-210

Huang Y, Chen C, Xing Z, Lin T, Liu Y (2018) Tell them apart: distilling technology differences from
crowd-scale comparison discussions. In: Proceedings of the 33rd ACM/IEEE international conference
on automated software engineering. ACM, pp 214-224

Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of the 2003 confer-
ence of the North American chapter of the association for computational linguistics on human language
technology-volume 1, association for computational linguistics, pp 48-54

Luong MT, Sutskever I, Le QV, Vinyals O, Zaremba W (2014) Addressing the rare word problem in neural
machine translation. arXiv:14108206

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space.
arXiv:13013781

Mikolov T, Dean J (2013) Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems

Mikolov T, Deoras A, Povey D, Burget L, Cernocky J (2011) Strategies for training large scale neural network
language models. In: 2011 IEEE workshop on automatic speech recognition and understanding (ASRU).
IEEE, pp 196201

Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S (2010) Recurrent neural network based language
model. In: Interspeech, vol 2, p 3

Muntés Mulero V, Paladini Adell P, Espafia Bonet C, Marquez Villodre L (2012) Context-aware machine
translation for software localization. In: Proceedings of the 16th annual conference of the European
association for machine translation: EAMT 2012: Trento, Italy, May 28th-30th 2012, pp 77-80

United Nations (2018b) http://www.un.org/en/sections/about-un/official-languages/index.html. http://ask.
un.org/faq/14463, Accessed 2018-06-20

Nguyen AT, Nguyen TT, Nguyen TN (2013) Lexical statistical machine translation for language migration.
In: Proceedings of the 2013 9th joint meeting on foundations of software engineering. ACM, pp 651-654

Nguyen AT, Nguyen TT, Nguyen TN (2014) Migrating code with statistical machine translation. In:
Companion proceedings of the 36th international conference on software engineering. ACM, pp 544-547

Nguyen AT, Nguyen TT, Nguyen TN (2015) Divide-and-conquer approach for multi-phase statistical migra-
tion for source code (t). In: 2015 30th IEEE/ACM international conference on automated software
engineering (ASE). IEEE, pp 585-596

O’Brien S (1998) Practical experience of computer-aided translation tools in the software localization
industry. Unity in diversity pp 115-122

Oda Y, Fudaba H, Neubig G, Hata H, Sakti S, Toda T, Nakamura S (2015) Learning to generate pseudo-
code from source code using statistical machine translation (t). In: 2015 30th IEEE/ACM international
conference on automated software engineering (ASE). IEEE, pp 574-584

Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine transla-
tion. In: Proceedings of the 40th annual meeting on association for computational linguistics, association
for computational linguistics, pp 311-318

Phraseapp (2018c) Software translation management. https://phraseapp.com/, Accessed 2018-06-20

Plamada M, Volk M (2013) Mining for domain-specific parallel text from wikipedia. ACL 2013, pp 112

Ren Z, Lii Y, Cao J, Liu Q, Huang Y (2009) Improving statistical machine translation using domain bilin-
gual multiword expressions. In: Proceedings of the workshop on multiword expressions: identification,
interpretation, disambiguation and applications, association for computational linguistics, pp 47-54

Rice WR (1989) Analyzing tables of statistical tests. Evolution 43(1):223-225

Rich DP (2011) Method and system for improved software localization. US Patent 7,987,087

Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM
18(11):613-620

@ Springer


https://play.google.com/store
http://arxiv.org/abs/160508535
http://arxiv.org/abs/170407734
http://arxiv.org/abs/14108206
http://arxiv.org/abs/13013781
http://www.un.org/en/sections/about-un/official-languages/index.html
http://ask.un.org/faq/14463
http://ask.un.org/faq/14463
https://phraseapp.com/

Empirical Software Engineering

Smartling (2018d) Smartling global content translation and localization solution. https://www.smartling.
com/, Accessed 2018-06-20

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in
neural information processing systems, pp 3104-3112

Tjalling H (2016) Automatic comment generation using a neural translation model

Transifex (2018e) Transifex: Localization platform for translating digital content. https://www.transifex.
com/, Accessed 2018-07-20

Turian J, Ratinov L, Bengio Y (2010) Word representations: a simple and general method for semi-supervised
learning. In: Proceedings of the 48th annual meeting of the association for computational linguistics,
association for computational linguistics, pp 384-394

Wang X, Zhang L, Xie T, Mei H, Sun J (2010) Locating need-to-translate constant strings in web applications.
In: Proceedings of the eighteenth ACM SIGSOFT international symposium on foundations of software
engineering. ACM, pp 87-96

Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78(10):1550-1560

White M, Vendome C, Linares-Vasquez M, Poshyvanyk D (2015) Toward deep learning software reposito-
ries. In: 2015 IEEE/ACM 12th working conference on mining software repositories (MSR). IEEE, pp
334-345

Wu H, Wang H, Zong C (2008) Domain adaptation for statistical machine translation with domain dictio-
nary and monolingual corpora. In: Proceedings of the 22nd international conference on computational
linguistics-volume 1, association for computational linguistics, pp 993—1000

Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, et
al. (2016) Google’s neural machine translation system: Bridging the gap between human and machine
translation. arXiv:160908144

Xia X, Lo D, Zhu F, Wang X, Zhou B (2013) Software internationalization and localization: an indus-
trial experience. In: 2013 18th international conference on Engineering of complex computer systems
(ICECCS). IEEE, pp 222-231

Zens R, Och FJ, Ney H (2002) Phrase-based statistical machine translation. In: Annual conference on
artificial intelligence. Springer, pp 18-32

Zhang J, Zong C et al (2013) Learning a phrase-based translation model from monolingual data with
application to domain adaptation. In: ACL, vol 1, pp 1425-1434

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Xu Wang is a graduate of Australian National University, Australia. He obtained the Master of Computing
(Advanced) degree from ANU in 2018. Xu’s research area focuses on applying deep learning techniques to
solve software engineering problems.

@ Springer


https://www.smartling.com/
https://www.smartling.com/
https://www.transifex.com/
https://www.transifex.com/
http://arxiv.org/abs/160908144

Empirical Software Engineering

Chunyang Chen is a lecturer in the Faculty of Information Technology, Monash University, Australia. He
obtained the Ph.D degree from Nanyang Technological University, Singapore in 2018. Dr. Chen’s research
mainly focuses on Software Engineering and Human-computer Interaction. His works are mostly about min-
ing software repositories to distill insights from big data. Based on such insights, he develops many tools to
assist developers in the software development process. Apart from developers, he also carries out research
about assisting designers with the UI design.

Zhenchang Xing is the senior lecturer at the research school of computer science, Australian National
University, Australia. Dr. Xing’s research interests include software engineering and human-computer inter-
action. His work combines software analytics, behavioral research methods, data mining techniques, and
interaction design to understand how developers work, and then build recommendation or exploratory search
systems for the timely or serendipitous discovery of the needed information.

@ Springer



Empirical Software Engineering

Affiliations

XuWang" - Chunyang Chen2 © . Zhenchang Xing'

Xu Wang
u5833088 @anu.edu.au

Zhenchang Xing
zhenchang.xing @anu.edu.au

' College of Engineering & Computer Science, Australian National University,
Canberra, Australia

2 Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia

@ Springer


http://orcid.org/0000-0003-2011-9618
mailto: u5833088@anu.edu.au
mailto: zhenchang.xing@anu.edu.au

	Domain-specific machine translation with recurrent neural network for software localization
	Abstract
	Introduction
	Background
	Word Embeddings
	Recurrent Neural Network

	Data Collection
	Software-Specific Translation
	Dictionary-Based Translation
	Neural Translation
	RNN Encoder-Decoder Model
	Adding Attention and Category Information
	Addressing Rare Domain-Specific Word Problem


	Evaluation
	Evaluation Metric
	BLEU Score
	Exact Match

	RQ1: Comparison with Existing Machine Translation Techniques
	Evaluation Setup
	Results

	RQ2: Translation Across App Categories
	Evaluation Setup
	Results

	RQ3: Generalization Across other Languages
	Evaluation Setup
	Results

	RQ4: Usefulness of our Translation Model
	Evaluation Setup
	Results


	Threats to Validity
	Amount and Quality of Training Data
	Parameter Tuning

	Related Work
	Software Localization
	Machine Translation
	Machine Translation in Software Engineering

	Conclusion and Future Work
	References
	Affiliations


