

UI2code: A Neural Machine Translator to Bootstrap Mobile GUI Implementation

Chunyang CHEN, Ting Su, Guozhu Meng, Zhenchang Xing, Yang Liu

Nanyang Technological University, Australian National University

Background

• UI (User Interface) is crucial for the success of the App

Good:

Bad:

APP UI Development

Ul design

designer

Ul implementation developer

0 🐨 🖌 🖿

ACCIDENT

5

✓ Confirm

Convert UI design image to GUI skeleton code

Implementing This UI Design ... Please!

- Which GUI components to use?
- How to compose these components?

• Gap between UI designers and developers

How to Fill in This Gap?

- Trial-and-error in GUI builder
 - Too many components and ways of composition
- Search GUI framework tutorials or similar code implementations
 - How to formulate concise, accurate text query of the UI design? (the gap between UI image and natural language)
 - Image search? not supported so far (but I am working on this)
- Ask the community (e.g., Stack Overflow)
 - Well, this depends on the community and luck

Dream Comes True

Automated GUI testing exploration

- > The **first real-world** large scale (185K) dataset of UI-code pairs
- A deep neural network
 - CNN to understand visual features
 - RNN to encode spatial layout and generate the code

Data Collection

- Crawl Apps from Google Play
- Automatically Explore App Uls:
 - Action: click, edits, scroll
 - Prioritizing UI exploration:
 - Frequency of action
 - Number of subsequent UIs
 - Type of action

$$execution_weight(a) = \frac{\alpha * T_a + \beta * C_a}{\gamma * F_a}$$

Better show a UI state model after animation.

Data Collection

Collect UI screenshots & GUI Skeleton code

Dataset

- 5043 apps in 25 categories ?show category barchart in the top-right empty space?
- I85,227 pairs of UI images and GUI skeleton code
- http://tagreorder.appspot.com/ui2code.html

UI2code Approach

An UI-specific deep neural network

- CNN to understand visual features
- RNN encoder-decoder
 - > Encoder further encodes the **structural** ?we use spatial in the paper information
 - Decoder generates the GUI skeleton code

https://github.com/ccywch/Ul2code

NANYANG TECHNOLOGICAL UNIVERSITY

• 60.28% exact match & 79.09 BLEU score

??add a summary of errors

User Study

- ▶ 8 participants for developing 5 UI design images
 - ▶ 4 as experimental group, 4 as control group

Wait a Minute. Are We Becoming Replaceable?

Artificial Intelligence

- © Good for dealing with complex problems efficiently
- ▶ ⊗ May not be **reliable** or **interpretable**

Thanks for the listening !

Chen, Chunyang, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. "From ui design image to gui skeleton: a neural machine translator to bootstrap mobile gui implementation." In *Proceedings of the 40th International Conference on Software Engineering*, pp. 665-676. ACM, 2018.

Chunyang Chen wchccy@gmail.com